[home] [Personal Program] [Help]
15 mins
Velocity-Gradient Probability Distribution Functions in a Lagrangian Model of Turbulence
Luca Moriconi, Rodrigo M. Pereira, Leonardo S. Grigorio
Session: Lagrangian aspects of turbulence 1
Session starts: Wednesday 26 August, 10:30
Presentation starts: 10:45
Room: Room F

Luca Moriconi (Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil)
Rodrigo M. Pereira (Laboratoire de Physique, École Normale Supérieure de Lyon, France)
Leonardo S. Grigorio (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Nova Friburgo, Brazil)

The Recent Fluid Deformation Closure (RFDC) model of lagrangian turbulence is recast in path-integral language within the framework of the Martin-Siggia-Rose functional formalism. In order to derive analytical expressions for the velocity-gradient probability distribution functions (vgPDFs), we carry out noise renormalization in the low-frequency regime and find approximate extrema for the Martin-Siggia-Rose effective action. We verify, with the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close description of the single-point statistical features implied by the original RFDC stochastic differential equations.