15th European Turbulence Conference 2015
August 25-28th, 2015, Delft, The Netherlands
Home Program Author Index Search

TURBULENT TRANSPORT OF CHEMICALLY REACTING GASEOUS ADMIXTURES


Go-down etc15 Tracking Number 74

Presentation:
Session: Reacting and compressible flows 1
Room: Room F
Session start: 13:30 Wed 26 Aug 2015

Tov Elperin   elperin@bgu.ac.il
Affifliation: Ben-Gurion University of the Negev

Nathan Kleeorin   nat@bgu.ac.il
Affifliation: Ben-Gurion University of the Negev

Michael Liberman   misha.liberman@gmail.com
Affifliation: Nordita, KTH Royal Institute of Technology and Stockholm University

Igor Rogachevskii   gary@bgu.ac.il
Affifliation: Ben-Gurion University of the Negev


Topics: - Reacting and compressible turbulence, - Transport and mixing

Abstract:

We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our previous study [Phys. Rev. Lett. 80, 69 (1998)] using a path-integral approach for a delta-correlated in time random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions. In the present study we use the spectral tau approximation, that is valid for large Reynolds and Peclet numbers, and show that turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times (turbulent Damköhler number). We have demonstrated that the derived theoretical dependence of turbulent diffusion coefficient versus the turbulent Damköhler number is in a good agreement with that obtained previously in the numerical modelling of a reactive front propagating in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour-effect of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients. The mechanisms of the turbulent cross-effects are different from the molecular cross effects known in irreversible thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions.