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Abstract A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting
via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We emphasise
the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads’ precession
frequencies resonate with the system’s nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent
cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

INTRODUCTION

We introduce a new robust mechanism of strong energy transfers in real physical systems, precisely in the context where
the hypotheses of classical wave turbulence theory [6, 12, 10] do not hold, namely when the spatial domains have a finite
size, when the amplitudes of the carrying fields are not infinitesimally small and when the linear wave timescales are
comparable to the timescales of the nonlinear oscillations. The theory that deals with these energy exchanges is Discrete
and Mesoscopic Wave Turbulence [11,9, 7, 8,4, 1, 2] and is still in development. Our results apply to a variety of systems,
namely the nonlinear partial differential equations (PDEs) of classical turbulence, nonlinear optics, quantum fluids and
magneto-hydrodynamics considered on bounded physical domains. For the sake of simplicity of presentation we discuss

here the Charney-Hasegawa-Mima (CHM) equation [3, 5], a PDE governing Rossby waves in the atmosphere and drift
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field ¢(x,t)(€ R) is the electrostatic potential, F'~'/2 is the ion Larmor radius at the electron temperature and 3 is a
constant proportional to the mean plasma density gradient.

We assume periodic boundary conditions: x € [0,27)2. Decomposing the field in Fourier harmonics, ¢(x,t) =
> kezz Ax(t)e™* with wavevector k = (ky, k), the components Ay (t), k € Z? satisfy the evolution equation

waves in inhomogeneous plasmas: (V2 — F)% +4 % +

= 0, where in the plasma case the wave
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where Z¥ | = (kizka, — k1,k )w are the interaction coefficients, wy, = —2rz are the linear frequencies and
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0 is the Kronecker symbol. Reality of ¢ implies A_x = A}, (complex conjugate). Since the degree of nonlinearity in the
PDE is quadratic, the modes Ay interact in triads. A triad is a group of any three spectral modes Ay, (), Ak, (t), Ak, (t)
whose wavevectors satisfy k; + ko = kg. The triad’s linear frequency mismatch is defined by wtflq = Wk, + Wk, — Wky-
Since any mode belongs to several triads, energy can be transferred nonlinearly throughout the intricate network or cluster
of connected triads. In weakly nonlinear wave turbulence, triad interactions with non-zero frequency mismatch can be
eliminated via a near-identity transformation. However, at finite nonlinearity these interactions cannot be eliminated a
priori because they take part in the triad precession resonances presented below.

TRULY DYNAMICAL DEGREES OF FREEDOM AND PRECESSION RESONANCE

We introduce the amplitude-phase representation: Ay = ,/ny exp(i ¢k ), where ny is called the wave spectrum [10].

Energy £ = Y (|k|? + F)ny and enstrophy € = > |k|?(|k|? + F)ny are conserved at all times. In the context of
kez? KeZ2
CHM equation (Galerkin-truncated to /N wavevectors), the truly dynamical degrees of freedom are any N — 2 linearly

independent triad phases gplﬁkz = ¢k, + Pk, — Pk, [4] and the N wave spectrum variables ny. These 2N — 2 degrees
of freedom satisfy a closed system of evolution equations (individual phases ¢y are obtained by quadrature):
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where the second equation applies to any triad (k; + ko = kj). NNTTEk2 is a short-hand notation for “nearest-
neighbouring-triad terms”; these are nonlinear terms similar to the second term in the RHS of equation (3).

Precession resonance. The triad phases gpﬁi‘kz have a subtle contribution to the energy of the system. Under plausible
hypotheses, the RHS of Eq. (3) a.dmits a zero-mode (in .time): Qll:f_kz = limy 00 7 fg @tfb (t’ )dt' . Thi§ is by. definition
the precession frequency of the triad phase and is a nonlinear functional of the dynamical variables. Typically it does not
perturb the energy dynamics because it is incommensurate with the frequency content of the nonlinear oscillations of the
triad variables gpll:?kz and nk, , Nk,, Nks-

However, in special circumstances a resonance occurs whereby the triad precession frequency Qlﬁsz matches one of the
typical nonlinear frequencies (generically denoted I') of the triad variables. In this case, the RHS of Eq.(2) will normally
develop a zero-mode (in time), leading to a sustained growth of the energy in the corresponding wave spectrum ny, for
some wavevector(s) k. We call this a (nonlinear) triad precession resonance. When several triads are involved in this type
of resonance, strong fluxes of enstrophy are exhibited through the network of interconnected triads, leading to coherent
collective oscillations and cascades towards small scales.

Probing the strong transfer mechanism. This resonance is easily accessible via initial-condition uniform rescaling
(nk — any), provided the linear frequency mismatch wll:'sz be nonzero for some triad. Figure 1 (left panels) show,
for a low-dimensional model, that peaks in efficiency of enstrophy transfer are obtained at selected values of the initial-
amplitude rescaling parameter «, coinciding with the values at which the precession resonance is hit and according to
the theoretically-predicted values. Figure 1 (centre & right panels) show, for the full PDE model, that peaks in enstrophy
transfer efficiency towards high wavenumbers are attained at intermediate amplitudes, corresponding to regimes when
several triads enter into a collective precession resonance. Ultimately, the precession resonance is associated with the
presence of periodic orbits and unstable manifolds in the phase space. More details are found in our PRL publication [2].
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Figure 1. Left Panels: Numerical results from a low-dimensional model showing dimensionless precession (top) and enstrophy
transfer efficiency to a target mode (bottom). Vertical lines indicate predicted resonances and show strong transfer efficiency at these
values when precession resonance condition Q33 = p I is satisfied (horizontal lines, top). Centre and Right Panels: Numerical results
from full PDE model at 1282 resolution. Centre: enstrophy transfer efficiency against re-scaling factor c in high-wavenumber bins
Bing and Bing. Vertical lines denote o« = 900. Right: dimensionless precession standard deviation (over all interacting triads) and
enstrophy transfer efficiency in Bing, both near efficiency peak o = 900.
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