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A UNIFIED SHELL MODEL FOR BUOYANCY-DRIVEN TURBULENCE
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Abstract We construct a unified shell model for stably stratified and convective turbulence. Shell model simulation of stably stratified
flow in turbulent regime exhibit Bolgiano-Obukhbov (BO) scaling in which the kinetic energy spectrum varies as k−11/5. However,
simulation of convective turbulence shows Kolmogorov’s spectrum. These results are consistent with the direct numerical simulations
of Kumar et al. [Phys. Rev. E 90, 023016 (2014)]. We also observe a dual scaling (k−11/5 and k−5/3) for a limited range of parameters
in stably stratified flow.

Buoyancy-driven flows [1] can be categories as: (a) Stably stratified flows in which the hotter fluid is above the colder
fluid. These flows are stable; (b) Convective flows in which the colder fluid is above the hotter fluid. Such flows are
unstable, since, the heavier fluid comes down, and the lighter fluid goes up with gravity acting downward. In this paper,
we will discuss the turbulent aspects of such flows.

Direct numerical simulation (DNS) of turbulent flows with a moderate Reynolds number (Re) is quite difficult. For
example, DNS of flows with Re ≈ 106 requires about trillion grid points [2], which is impossible even for the best of
present supercomputer. In a shell model, flows with large Reynolds number can be easily simulated (approximately) with
40 or more shell variables, with each variable representing all the modes of the corresponding logarithmically-binned
shell [3, 4]. Thus, a shell model helps us study turbulent flow. In this paper we present a study of turbulent buoyancy-
driven flow using a unified shell model.

Shell Model: Our shell model [5] for the buoyancy-driven turbulence is

dun
dt

= Nn[u, u] + αgθn − νk2nun + fn, (1)

dθn
dt

= Nn[u, θ]− dT̄

dz
un − κk2nθn, (2)

where un and θn are the shell variables for the velocity and temperature fluctuations respectively, fn represents the
external force field, kn = k0λ

n is the wavenumber of the n-th shell, and ν and κ are fluid’s kinematic viscosity and
thermal diffusivity respectively. Here αgθn and dT̄ /dz are the buoyancy and temperature gradient respectively, where α
is the thermal expansion coefficient, and g is the acceleration due to gravity. Note that dT̄ /dz > 0 for the stably stratified
flow, but dT̄ /dz < 0 for the convective turbulence. We use Sabra model [6] to construct the nonlinear terms Nn[u, u] and
Nn[u, θ] as

Nn[u, u] = −i(a1knu∗n+1un+2 + a2kn−1u
∗
n−1un+1 − a3kn−2un−1un−2) (3)

Nn[u, θ] = −i[kn(d1u
∗
n+1θn+2 + d3θ

∗
n+1un+2) + kn−1(d2u

∗
n−1θn+1 − d3θ∗n−1un+1)

−kn−2(−d1un−1θn−2 − d2θn−1un−2)] (4)

where a1 = d1 = 1, a2 = d2 = λ−2, and a3 = d3 = 1−λ, where λ = (
√

5+1)/2 is the golden mean [4]. The boundary
conditions are u−1 = u0 = uM+1 = uM+2 = 0 and θ−1 = θ0 = θM+1 = θM+2 = 0, where M is the total number of
shells. In absence of the external forcing, the buoyancy, and the stratification, the above model conserves [4] the kinetic
energy

∑
n |un|2/2, the kinetic helicity

∑
n(−1)nkn|un|2, and the entropy

∑
n |θn|2/2. The important nondimenesional

parameters are the Prandtl number Pr = ν/κ and the Rayleigh number Ra = (αgd4/νκ)(dT̄ /dz).

Results: For stably stratified turbulence, we simulate the shell model for Pr = 1, Ra = 105, and the energy supply
rate of 50. We obtain the Froude number Fr = 3.2 and Re = 103. The Froude number is the ratio of the characteristic
velocity and the gravitational wave velocity. In Fig. 1(a) we plot the kinetic energy (KE) and entropy spectra that exhibits
the Bolgiano-Obukhbov [7, 8] scaling. To obtain dual scaling, we need a higher range of wavenumber for which we
increase the Rayleigh number to 1010. Consequently we obtain Re = 2.0 × 105 and Fr = 2.0. We observe dual scaling
for the kinetic energy spectrum, as shown in Fig. 1(b). The wavenumber range 4 < k < 18 exhibit Bolgiano scaling
[Eu(k) ∼ k−11/5], and 18 < k < 100 exhibit Kolmogorov scaling [Eu(k) ∼ k−5/3].

For convective turbulence, we performed simulation for Pr = 1 and Ra = 1012, which yields, Re = 8.7 × 106. In
Fig. 2(a) we plot the KE and entropy spectra which shows Kolmogorov scaling, i.e. Eu(k) ∼ k−5/3 and Eθ(k) ∼ k−5/3.
As shown in Fig. 2(b), we obtain constant energy fluxes in inertial range (20 < k < 1000), consistent with the Kolmogorov
scaling.

In summary, we present a unified shell model for buoyancy-driven turbulence which is applicable to both stably
stratified and convective turbulence. Earlier, Brandenburg [9], Mingshul and Shida [10], and Ching and Cheng [11] had
constructed shell models for convective turbulence, but their results were divergent, and their shell models are not fully
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Figure 1. For stably stratified simulation: (a) plots of KE and entropy spectra for Pr = 1, Ra = 105, and Ri = 0.10 and (b) plot of
KE spectrum for Pr = 1, Ra = 1010, and Ri = 0.25. In Fig. (b), the wavenumber range 4 < k < 18 exhibit Bolgiano scaling, and
18 < k < 100 exhibit Kolmogorov scaling (thus dual scaling). The green shaded region shows the forcing range.
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Figure 2. For convective turbulence simulation with Pr = 1 and Ra = 1012: (a) plots of KE and entropy spectra; (b) plots of KE flux
Πu(k) and entropy flux Πθ(k).

satisfactory. Our model overcomes these deficiencies and yields BO scaling for stably stratified turbulence when buoyancy
is significantly strong. We also obtain dual spectrum for stably stratified flows for a narrow set of parameters. Note that
very strong buoyancy (Fr � 1) produces quasi two-dimensional flow [12, 13], but the parameter regime of our shell
model differs from this regime. Our shell model for the convective turbulence exhibits Kolmogorov scaling. The results
from our shell model are consistent with those of DNS of Kumar et al. [14].
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