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SWEEPING HAS NO EFFECT ON RENORMALIZED TURBULENT VISCOSITY
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Abstract We perform renormalization group analysis (RG) of the Navier-Stokes equation in the presence of constant mean velocity
field U0, and show that the renormalized viscosity is unaffected by U0, thus negating the “sweeping effect", proposed by Kraichnan
[Phys. Fluids 7, 1723 (1964)] using random Galilean invariance. Using direct numerical simulation, we show that the correlation
functions 〈u(k, t)u(k, t+ τ)〉 for U0 = 0 and U0 6= 0 differ from each other, but the renormalized viscosity for the two cases are the
same. Our numerical results are consistent with the RG calculations.

Navier Stokes equation satisfies the Galilean invariance. Kraichnan [1], however, argued that the “random” Galilean
invariance is not obeyed in Eulerian formulation of fluid flow due to the sweeping effect, according to which small-scale
fluid structures are convected by the large energy-containing eddies. Kraichnan considered a fluid flow with a random
mean velocity field, which is constant in space and time, but has a Gaussian and isotropic distribution over an ensemble of
realisations. An application of direct interaction approximation to such system yields E(k) ∼ (ΠU0,rms)

1/2k−3/2, where
U0,rms is the rms value of the mean velocity. This observation is contrary to the observations (E(k) ∼ k−5/3), therefore
Kraichnan claimed inadequacies of the Eulerian formalism for obtaining Kolmogorov’s spectrum for fully developed fluid
turbulence. Later, he developed Lagrangian field theory of fluid turbulence that is consistent with the Kolmogorov’s 5/3
theory of turbulence.

We performed renromalization group analysis of the Navier-Stokes equation in the presence of a “constant” mean
velocity field U0 using the methods proposed by McComb, Zhou, and coworkers [2, 3]. We show that the renormal-
ized viscosity is independent of the mean velocity, thus showing an absence of the sweeping effect on the renormalized
viscosity. The energy spectrum is independent of the mean velocity, and it follows Kolmogorov’s spectrum.

In this renormalization process, the wavenumber range (kN , k0) is divided logarithmically into N shells. The nth
shell is (kn, kn−1) where kn = hnk0 (h < 1). In the first step, the spectral space is divided in two parts: the shell
(k1, k0) = k>, which is to be eliminated, and (kN , k1) = k<, set of modes to be retained. The equation for a Fourier
modes belonging to k< is[

−iω(k) + iU0 · k + (ν0(k) + δν0(k))k2
]
u<i (k̂) = − i

2
Pijm(k)

∫
dpdω(p)[u<j (p̂)u<m(k̂ − p̂)] + fi(k̂) (1)

where the correction to the kinematic viscosity δν0(k) is given by

δν0(k)k2 =
1

2

∫ ∆

p̂+q̂=k̂

dpdω(p)[S(k, p, q)G(q̂)C(p̂)]

=
1

2

∫ ∆

p̂+q̂=k̂

dpdω(p)
S(k, p, q)C(p)

(−iω(q) + iU0 · q + ν0(q)q2)(−iω(p) + iU0 · p + ν0(p)p2)

=
1

2

∫ ∆

p̂+q̂=k̂

dp
S(k, p, q)C(p)

[−ν0(k)k2 + ν0(p)p2 + ν0(q)q2 +
((((((((((((((
(−iU0 · k + iU0 · p + iU0 · q)]

=
1

2

∫ ∆

p̂+q̂=k̂

dp
S(k, p, q)C(p)

−ν0(k)k2 + ν0(p)p2 + ν0(q)q2
. (2)

whereG(q̂) is Green’s function, C(p̂) = C(p)/(−iω(p)+iU0 · p+ν0(p)p2) is the correlation function, and S(k, p, q) =
kp((d − 3)z + 2z3 + 2xy), where d is the space dimension. The integral is performed over the first shell ∆ = (k1, k0).
In the above computation we also use ω(k) = ω(p) + ω(q) and iω(k) = iU0 · k + ν0(k)k2.

Our computation clearly shows that the correction to the kinematic viscosity is independent of U0. As a result, the
renormalized viscosity after the first step is ν1(k) = ν0(k) + δν0(k), and subsequent steps are also independent of U0.
Following the subsequent steps of McComb [2, 4, 5] and Zhou [3, 6] for U0, we can show that the

E(k) = KKoΠ2/3k−5/3 (3)

ν(k) = ν∗
√
KKoΠ1/3k−4/3 (4)

where E(k) = 4πk2C(k), KKo is the Kolmogorov’s constant, Π is the energy flux, ν(k) is the renormalized viscosity,
and ν∗ is a constant that satisfies the RG equations. In 3D, ν∗ ≈ 0.4. These results are same as those obtained for U0 = 0.
We compute the renormalized viscosity using direct numerical simulations [7] for U0 = 0 and U0 = 10. We employ the
following formula [8] for the same:

R(k, τ) =
C(k, τ)

C(k, 0)
=
〈u(k, t) · u∗(k, t+ τ)〉

〈|u(k, t)|2〉
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Figure 1. (a) Plots of the normalised correlation function Re(R(k, τ)) for k = 7, 8, 9, 15, 20; (b) For U0 = 10 and k = (0, 0, 10),
Re(R(k, τ)) (thick red) and Im(R(k, τ)) (thin blue), exhibit damped oscillations. Re(R(k, τ)) (thick green) for U0 = 0 envelopes
R(k, τ) for U0 = 10, thus demonstrating the ν(k) is same for U0 = 0 and 10.

(5)

For U0 = 0, the function Re(R(k, τ)) for k = (0, 0, k) with k = 7, 8, 9, 15, 20 are plotted in Fig. 1(a). We observe
that the normalised correlation function decays with a timescale τc(k) = ν(k)k2, thus validating the renormalization
procedure described above. For U0 = 10, the function Re(R(k, τ)) for k = (0, 0, 10) is shown in Fig. 1(b). The
normalised correlation function exhibits damped oscillations with ω = kzU0 and decay time scale of 1/(ν(k)k2). The
numerical data is consistent with the prediction that the time period of oscillations T = 2π/(kzU0) = 2π/(10 × 10) ≈
0.062. In the same plot, we also exhibit the corresponding plot for U0 = 0, which acts as an envelop for the U0 = 10
curve. Thus we demonstrate that the renormalized viscosity ν(k) = 1/(τck

2) for U0 = 0 and 10 are the same, and it is
Galilean invariant, though the correlation function is a function of U0. Yakhot et al. [9] argued that the sweeping effect is
negligible when the parameter ε = 0. Note however that our proof is explicit and direct compared to previous works. Our
results are very encouraging for application of Eulerian field theory to field-theoretic computations of turbulence.
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