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Abstract Direct Numerical Simulations of spatially periodic unsteady turbulence show that the high Reynolds number scalings of
the instantaneous energy dissipation rate and interscale energy flux at intermediate wavenumbers are qualitatively different from the
well-known u′(t)3/L(t) cornerstone scalings of equilibrium turbulence where u′(t) and L(t) are time-dependent rms velocity and
integral length-scales. Instead, they both scale as U0L0 u′(t)2/L(t)2 where L0 and U0 are length and velocity scales characterizing
initial/overall unsteady turbulence conditions.

INTRODUCTION

Recent wind and water tunnel experiments (see Vassilicos 2015 Ann. Rev. Fluid Mech. 47, 95-114) show that in a
variety of decaying turbulent flows with different levels of statistical homogeneity and well-defined k−5/3 wavenumber
dependence of the energy spectrum E(k, t), the following high Reynolds number law of the dissipation rate ϵ(t) of
turbulent kinetic energy is observed:

ϵ(t) ∼
√
Re0

Reλ(t)

u′(t)3

L(t)
∼ νRe0

u′(t)2

L(t)2
(1)

where t is a time surrogate for streamwise distance, L(t) is an integral length-scale, Re0 = U0L0/ν is a global Reynolds
number based on a velocity U0 and a length scale L0 characterizing the initial/inlet conditions, Reλ = u′λ/ν is a local
Reynolds number based on the Taylor length λ(t) and the rms turbulence velocity u′(t), and ν is the kinematic viscosity
of the fluid. This dissipation law is fundamentally different from the well-known scaling first introduced by Taylor (1953,
Proc. R. Soc. Lond. A 151, 421-444)

ϵ(t) = Cϵ
u′(t)3

L(t)
, (2)

where Cϵ is a dimensionless constant. This law (2) of dissipation relates ϵ(t), which is a small-scale quantity, to the large-
scale flow properties L(t) and u′(t) and has therefore provided a foundation for the modeling of small-scale turbulence
and prediction of turbulent flows in very many contexts, including basic properties of turbulent mean flow profiles (see, for
example, Townsend 1976 “The structure of turbulent shear flow” CUP, Launder & Spalding 1972 “Mathematical models
of turbulence” Academic Press, Tennekes & Lumley 1972 “A first course in turbulence” MIT Press).
The scale-by-scale energy balance in periodic turbulence is the same as in homogeneous (not necessarily isotropic) tur-
bulence (see Frisch 1995 “Turbulence, the legacy of A.N. Kolmogorov” CUP). In spectral space, this balance is the Lin
equation

∂

∂t
E(k, t) = − ∂

∂k
Π(k, t)− 2νk2 E(k, t) (3)

where Π(k, t) is the interscale energy flux to Fourier modes with wavenumber larger than wavenumber k. As explained
in Vassilicos (2015), whereas (2) is compatible with equilibrium turbulence where the inertial range energy flux and
dissipation are balanced at all times, the dissipation scaling (1) is not.
This paper’s first objective is to show that the new dissipation law (1) also holds at high Reynolds numbers in Direct
Numerical Simulations (DNS) of two very different kinds of unsteady periodic turbulence where the interscale balance
equation (3) is demonstrably the same as in homogeneous turbulence. The second and in fact most important objective
is to demonstrate that at high enough Reynols numbers in these two unsteady turbulent flows, the interscale energy flux
Π(k, t) at intermediate wavenumbers scales in the same way as the dissipation.

SIMULATIONS AND RESULTS

We conducted spectral DNS of turbulent incompressible fluid flows in a periodic cube. The forcing imposed on the
Navier-Stokes equation was f = (sin(2πmx

/
L) cos(2πmy

/
L),− cos(2πmx

/
L) sin(2πmy

/
L), 0), the very same forc-

ing introduced by Goto, Saito & Kawahara (2015 “Hierarchy of anti-parallel vortex turbes in turbulence at high Reynolds
numbers” submitted to J. Fluid Mech.) where L is the spatial period of the boundary condition and m is an integer. For
the decaying turbulence we chose m = 4 so that L(t) is sufficiently smaller than L (i.e. L(t) < 0.1L) during the decay
considered, and switched off the force when the dissipation rate ϵ(t) reached its maximum value. We run five different



simulation sizes between 1283 and 10243 for similar resolutions of the smallest eddies, corresponding to five different
values of Re0. To conduct DNS at higher Reynolds numbers, we used m = 1 and kept the forcing on throughout. In-
terestingly, the turbulence driven by this steady force is far from steady and u′(t), L(t) and ϵ(t) oscillate significantly in
time with a time scale of about 20⟨L⟩/⟨u′⟩ (see Goto, Saito & Kawahara 2015). These very low frequency oscillations
reflect alternations between turbulence decay periods where Reλ(t) decays and Cϵ(t) grows and turbulence build-up pe-
riods where Reλ(t) grows and Cϵ(t) decays. We run seven different sizes between 643 and 20483 for similar resolutions,
corresponding to seven different values of Re0 which is now defined as ⟨u′⟩⟨L⟩/ν. Some of our results are shown in the
figure below.
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Figure 1. Left plot: Cϵ(t)/
√
Re0 (where Cϵ is defined by (2)) plotted against Reλ(t) for the seven different continuously forced

cases in seven different colours showing good collapse on a single continuous line. (Similar results have been obtained in our decaying
turbulence for a few turnover times after turning off the forcing.) Insert: Dϵ ≡ Cϵ(t)Reλ(t)/

√
Re0 tends to vary around a constant

as Reλ → ∞. Right plot: CΠ(k, t) defined by Π(k, t) = CΠ(k, t)u
′(t)3/L(t) and plotted for k = 5kf where kf = 2π/m is the

forcing wavenumber (similar results for k/kf = 10, 20 which are also values of k larger than kf and smaller than 1/λ) against Reλ(t)

for the seven different continuously forced cases in the same seven different colours. Collapse on a single continuous line is good for
Reλ > 100. Insert: DΠ(k, t) versus Reλ(t) where Π(k, t) = DΠ(k)(νRe0)u

′(t)2/L(t)2. (Results similar to both plots have been
obtained in our decaying turbulence for a few turnover times after turning off the forcing and will be presented at the conference.)

CONNCLUSIONS

At high enough Reynolds numbers, ϵ(t) ∼ (νRe0)u
′(t)2/L(t)2 in spatially periodic unsteady turbulence, as in turbulence

generated by various types of grids in the wind tunnel and in various self-similar axisymmetric turbulent wakes. Re0 is
a Reynolds number defined by inlet/initial/global conditions. At equally high Reynolds numbers in our DNS, Π(k, t) =
DΠ(k)(νRe0)u

′(t)2/L(t)2 for k between kf and 1/λ. Both our decaying and our forced periodic turbulent flows are such
that ϵ(t) and Π(k, t) are not equal. Their scalings characterise non-equilibrium small-scale turbulence universally even
though they incorporate dependencies on inlet/initial/global conditions. The equilibrium inertial range balance between
ϵ(t) and Π(k, t) and the related Cϵ = Const scaling hold together only for turbulence forced so as to keep the energy
spectrum time-independent, the ideal situation for the Kolmogorov (1941) theory to apply. Our results motivate the
development of a non-equilibrium cascade theory of small-scale turbulence which we also plan to present.


