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Abstract We present here an original approach to reconstruct the vorticity distribution inside an axisymmetric vortex ring from
some incomplete and possibly noisy measurements of the corresponding velocity field. The idea is to formulate an inverse problem for
identifying the structure of the vorticity distribution and solve this problem by a suitable numerical optimization algorithm. The novelty
of the present study is that the vorticity function is reconstructed in a very general form with no assumptions other than smoothness and
the behaviour at the endpoints of its domain of definition. This is fundamentally different from classical approaches (e. g.[13]) reducing
the reconstruction problem to fitting a small number of variables parameterizing the vorticity distribution of a given vortex-ring model.

INTRODUCTION

Vortex rings are encountered in many fluid flows, ranging from biological propulsion [4] to the fuel injection in internal
combustion engines [8]. In some practical applications, it is often necessary to reconstruct the vortex structure from
(incomplete) measurements of the induced velocity field (obtained via experiments or direct numerical simulation). The
classical approach is to fit measured data to theoretical vortex ring models. For such fitting purposes, the Norbury-Fraenkel
inviscid vortex ring model [10] was largely used and proved very useful in estimating global properties of actual vortex
rings [9]. We suggest in the following a new approach to reconstruct the vorticity distribution inside a vortex ring.

PHYSICAL PROBLEM AND OPTIMAL RECONSTRUCTION OF THE VORTICITY FUNCTION
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Figure 1. Domain Ω for the vortex ring
problem. Contours represent the level sets
of the streamfunction ψ in the frame of
reference moving with the vortex ring.

Using cylindrical coordinates (z, r, θ), with z the propagation direction of the
flow, a vortex ring is defined (see Figure 1) as the axisymmetric region Ω such that
the azimuthal vorticity ω := ωθ is ω 6= 0 in Ω and ω = 0 elsewhere. The domain
Ω, also called vortex bubble, is delimited by streamline ψ = 0, where ψ(r, z)
is the Stokes streamfunction in the frame of reference moving with the vortex
ring. Classical vortex ring models are stationary solutions of Euler equations. The
key feature of such models is that the axisymmetric inviscid flow is completely
described by (e. g. [2]):
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ψ = 0 on γ := γz ∪ γb
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with f : R → R called vorticity function and L the self-adjoint elliptic operator
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. The only known analytical solution of this problem,

the Hill’s spherical vortex, assumes f(ψ) = const within a spherical domain Ω.

The very popular Norbury-Fraenkel (NF) family of vortex rings was numerically constructed [10] by prescribing (see
Figure 1): f(ψ) = const, ∀ψ > k > 0, and f(ψ) = 0, ∀ψ ≤ k. In the following, we do not make any assumption on the
vorticity function and formulate the following reconstruction problem:
Given the measurements m : γb ∪ γz → R of the velocity component tangential to the boundaries γb and γz , find
a vorticity function f̂ ∈ H1(I), such that the corresponding solution of (1) matches data m as well as possible in the
least-squares sense, i. e.
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where I is the “identifiability interval”, I := [0, ψmax], with ψmax > maxx∈Ω ψ(x).
In contrast to the most common problems of this type, in which the source function depends on the independent variables
(e.g., on x), in our reconstruction formulation the source f is sought as a function of the state variable ψ. To address
this aspect of the problem, a specialized version of the adjoint-based gradient approach was developed by deriving a
convenient expression of the (Sobolev) gradient of the cost functional (2). A similar method was developed in [3] for the
reconstruction of constitutive relations and already applied to other estimation problems in fluid mechanics in [11]. The
corresponding numerical algorithm was implemented using the freely available finite-element software FreeFem++ [7].
The details of the computational algorithms are available in [5].



RESULTS AND DISCUSSION

In addition to standard tests on the accuracy of the adjoint gradients, our approach was validated (see [5]) by reconstructing
the vorticity functions in two classical problems, namely, the vortex rings of Hill and Norbury-Fraenkel (see figure 2 a
and b). A very accurate reconstruction for the Hill vortex ring is obtained for different initial guesses of the vorticity
function. Given that we required our reconstructions to be continuous (H1) functions, the second problem involving a
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Figure 2. Reconstructed vorticity function f(ψ) (blue solid lines) and the corresponding initial guesses (red dashed lines) for different
test cases: (a) Hill’s spherical vortex ring, (b) Norbury-Fraenkel vortex ring, (c) DNS generated vortex ring. For cases (a) and (b), the
black dotted line represents exact solution, whereas the vertical dotted lines mark the maximum values achieved by the streamfunction
in exact solution. For case (c), the scatter plot {ω(rp, zp)/rp, ψ(rp, zp)}p obtained from DNS data is represented by dots.

discontinuous vorticity function turned out to be particularly challenging. As can be anticipated from the analogy with
the Gibbs phenomenon in numerical interpolation, the optimal reconstructions exhibit “wiggles” around the discontinuity
of f . Thus, in spite of the “pathology” of this test problem, our approach behaves as expected. Since our main goal
was to validate the method, the reconstruction problem was chosen to be “well-determined” in the sense that the velocity
measurements m were available on the entire boundary γ of the domain (which, in particular, determined the vortex
circulation Γ through Stokes’ theorem). The accuracy of the reconstruction as measured by the corresponding values of
the cost functional was indeed very good (figures not shown).
We also tested the reconstruction method using direct numerical simulation (DNS) data from [6]. The Reynolds number of
the flow, based on the injection velocity an the diameter of the generator is 3400. Figure 2 c) shows that the reconstructed
vorticity function lies inside the scatter plot {ω(rp, zp)/rp, ψ(rp, zp)}p obtained from DNS data. Experimental studies
[12, 1] reported similar scatter in the plots of ω/r versus ψ, indicating that the hypothesis of the steadiness of the flow
is not satisfied by real flows. However, experimental data was rather well fitted by an exponential vorticity function
f(ψ) = a exp(bψ), with a and b representing two constants adjusted during the fitting procedure [1]. This supports
the idea that steady inviscid models could be used as good approximations of unsteady viscous vortex rings arising in
real flows if the vorticity function f(ψ) is accurately determined. Our reconstruction algorithm provides such a good
approximation, proved to be better than a simple interpolation of the DNS data from the scatter plot. The applicability of
the reconstruction method for high Reynolds number DNS vortex rings is currently under investigation.
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