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Abstract We propose a new definition of the length scale in an eddy-viscosity model for large-eddy simulations (LES). This formulation
extends and generalizes a previous proposal [Piomelli, Rouhi and Geurts, Proc. ETMM10, 2014], in which the LES length scale was
expressed in terms of the integral length-scale of turbulence determined by the flow characteristics and explicitly decoupled from the
simulation grid; this approach was named Integral Length-Scale Approximation (ILSA). As in the original ILSA, the model coefficient
was determined by the user, and required to maintain a desired contribution of the unresolved, subfilter scales (SFS) to the global
transport. We propose a local formulation (local ILSA) in which the model coefficient is local in space, allowing a precise control over
SFS activity as a function of location. This new formulation preserves the properties of the global model; application to channel flow
and backward-facing step verifies its features and accuracy.
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FORMULATION

Large Eddy Simulation (LES) is based on resolving the large, energy-carrying, eddies and modelling the small, unre-
solved, ones. Filtering is the mathematical operation performed to separate the large eddies from the small, subfilter,
scales (SFS); the filter-width ∆ defines the physical size of the smallest retained eddies, and is linked to the model length-
scale. If the large scales are expected to account for most of the momentum transport, ∆ must be a fraction of the integral
scale L. In current-day LES practice, however, ∆ is generally determined based on the grid size h, i.e., ∆ ∝ h. This
choice decouples the filter-width from its physical meaning, leading to some undesirable characteristics of the model for
the unresolved scales . Piomelli et al.[4] proposed to resolve these deficiencies by associating the filter-width to the flow
properties, linking ∆ to an approximation of the integral length-scale computed using the resolved turbulent kinetic en-
ergy, Kres = 1/2u′iu

′
i and the dissipation rate, εtot = 2 (ν + νsfs) s

′
ijs

′
ij , where s′ij is the fluctuating part of the strain-rate

tensor. The Integral Length-Scale Approximation (ILSA) model was proposed, in which the integral length scale is esti-
mated as Lest = K3/2

res /εtot, and the model length scale is proportional to L, resulting in an eddy-viscosity approximation
of the form:

νsfs = (Cm∆)
2 ∣∣S∣∣ = C2

k

〈Kres〉3

〈εtot〉2
∣∣S∣∣ (1)

In (1), Ck is the only model parameter. In the original ILSA model [4] Ck was determined by performing a number of
auxiliary coarse-grid simulations in the configuration of interest, and finding the value of Ck that yields a desired value of
the global contribution of subfilter eddies to the total dissipation rate (Meyers et al., [3]):
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〈εtot〉V– ,t
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=
subfilter dissipation rate
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Since the quantities in (2) were averaged over the computational volume and time (〈...〉V– ,t), Ck is constant over the
domain; locally, the contribution of the unresolved scales to the dissipation could differ from the desired level of sV–ε .
In this study we propose a local formulation for ILSA, that allows a more precise assignment of the contribution of the
unresolved scales to the transport and extends the range of applicability of the model to more complex problems.
First, since sV–ε approaches unity as the Reynolds number is increased, we introduce a more general measure of SFS
activity based on the contribution of unresolved eddies to the Reynolds stresses.
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where τaij and Raij are the anisotropic parts of the modelled and resolved Reynolds stresses respectively. Note that u′i, the
fluctuating part of the velocity field, is known from the simulation results. In (3), the averaging 〈...〉Ω is performed only
over time and (if appropriate) in directions in which the flow is homogeneous. This implies that Ck is a function of space
in inhomogeneous flows, and the desired subfilter activity can be achieved, potentially, at each point. Once sΩ

τ is assigned,
substituting (1) and (4) into (3) and rearranging terms yields a quadratic equation for Ck that can be solved each time step
and in each grid cell.



Figure 1. Channel flow, Reτ = 1, 000, 64 × 97 × 64 grid points. Mean velocity (a) and urms velocity (b). Local ILSA with
sΩ
τ = 0.022; global ILSA model [4] with sV–τ = 0.022; dynamic model [1]; + DNS [2].

Figure 2. Ratio of the eddy viscosity (νsfs) to the kinematic viscosity for the backward-facing step on the coarse grid using (a) the
dynamic model and (b) the local ILSA model with sΩ

τ = 0.022. (c) grid size across the domain (1.3 × 10−3 ≤ ∆y/h ≤ 0.18).

RESULTS

The local ILSA model was used in channel flow at Reτ = uτδ/ν = 1, 000 and 2, 000 (where δ is the channel half-width,
uτ the friction velocity and ν the kinematic viscosity). Figure 1 shows the comparison between the local ILSA model (in
a case with sΩ

τ = 0.022), the global ILSA model [4] (using a constant Ck that yields sV–τ = 0.022 averaged over time and
volume) and the dynamic model [1]. As was the case for the global ILSA model, the local ILSA is also more accurate than
the dynamic model on a coarse grid; relating the model length scale to Lest produces a large eddy viscosity in the buffer
layer that compensates for the lack of momentum transport due to the under-resolution of the near-wall eddies. As the grid
is refined, these eddies are resolved better, and the eddy viscosity decreases to a grid-independent level controlled only
by the flow conditions and the value assigned externally to sΩ

τ . This is a desirable practice in LES [5]. Using a low value
of sΩ

τ requires a finer grid resolution to reach grid convergence, while higher values require lower computational effort,
but increase the contribution of the model to the transport (and, thus, may increase the modelling errors). Sensitivity tests
indicated that the model is accurate for sΩ

τ ≤ 0.03.
The local ILSA model was also used in calculations of a backward-facing step at Rec = 28, 000 (based on the centerline
velocity at the inlet and step height). The set up followed the experiment by Vogel & Eaton [7]. Three levels of grid
resolution were tested; coarse (256× 100× 64), intermediate (384× 150× 96) and fine (512× 200× 128). Comparing
the proposed model with sΩ

τ = 0.022 to the dynamic model confirmed that the local ILSA model has better accuracy on
the coarse grids; the mean velocity and Reynolds stresses (not shown) where in good agreement with the experimental
data when sΩ

τ ≤ 0.03.
Figure 2 compares the eddy viscosity obtained with the two models. Since the grid is refined in the shear layer emanating
from the step corner (Figure 2(c)), the dynamic model yields very low eddy viscosity in this region, while the local ILSA
model gives a more uniform distribution of the eddy viscosity (Figures 2(a) and (b)). This distribution is less prone to the
modelling and aliasing errors that appear when sudden grid discontinuities occur [6].
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