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Abstract We start from the two-dimensional Gross-Pitaevskii equation (GPE) and develop algorithms for the ab-initio determination

of the temperature (T ) dependence of the mutual-friction coefficients, α and α′, and the normal-fluid density ρn, which appear as

parameters in the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) two-fluid model for a superfluid. In the second part of our study, we

elucidate the statistical properties of two-dimensional, homogeneous, isotropic superfluid turbulence in the simplified HVBK model,

with values for the mutual-friction coefficients that are comparable to those we obtain from the first part of our study.

INTRODUCTION

Theoretical treatments of superfluid turbulence use a variety of models, which are applicable at different length scales and

for different interaction strengths. At low temperatures T and for weakly interacting bosons, the Gross-Pitaevskii (GP)

equation provides a good hydrodynamical description of a superfluid with quantum vortices. If we consider length scales

that are larger than the mean separation between quantum vortices, and if we concentrate on low-Mach-number flows,

then the two-fluid model of Hall, Vinen, Bekharevich, and Khalatnikov (HVBK) provides a good description of superfluid

turbulence. In the HVBK equations, the normal and superfluid velocities are coupled by two mutual-friction coefficients,

α and α′. The determination of α(T ), α′(T ), and the normal-fluid density ρn(T ) from experiments and a combination of

analytical and numerical methods, is a challenging problem (see Ref. [1] and references therein).

In the HVBK model, a superfluid vortex does not move with the superfluid velocity vs but with velocity

v = vsl + αs′ × (vn − vsl)− α′
s
′ × [s′ × (vn − vsl)], (1)

where vsl = vs +vsi is the local superfluid velocity, with vs and vsi the imposed superfluid velocity and the self-induced

velocity because of the vortices, respectively, and s
′ the unit tangent at a point on the vortex, with position vector s. Our

algorithm for the determination of the mutual-friction coefficients is based on the examinations of the spatiotemporal

evolutions of the following two initial configurations in the 2D Galerkin-truncated GP equation (TGPE): (1) ψIC1; and (2)

ψIC2. ψIC1 corresponds to a small, vortex-antivortex pair translating with a constant velocity along the x direction at a

finite temperature. ψIC2 corresponds to a vortex lattice (by virtue of the periodic boundary conditions), in which we place

vortices of alternating signs on the corners of a square at a finite temperature in the presence of a counterflow. We use

ψIC1 to determine α(T ) and ψIC2 to calculate both α(T ) and α′(T ) [1].

In the simplified, incompressible, 2D HVBK two-fluid model, the mutual-friction terms can be written as F
n

mf
=

(ρs/ρ)fmf and F
s

mf
= −(ρn/ρ)fmf , where ρn/ρ (ρs/ρ) is the normal-fluid (superfluid) density fraction; fmf =

B
2

ωs

|ωs|
×

(ωs × uns) +
B′

2
ωs × uns, with uns = (un − us) the slip velocity, and B = 2α/ ρn

ρ
and B′ = 2α′/ ρn

ρ
the coefficients of

mutual friction. In most of our studies we set B′ = 0 so, in 2D, fmf = −B
2
|ωs|uns (see Ref. [2] for details and references

therein for 3D studies).

RESULTS

We use direct numerical simulations (DNSs) of the 2D TGPE to show that the determination of α(T ) and α′(T ) is far

more challenging in 2D than it is in three dimensions (3D) because of large fluctuations. In Fig. 1(a), we plot, versus the

scaled temperature T/T̃BKT, where T̃BKT is a rough, energy-entropy-argument estimate of the Berezinskii-Kosterlitz-

Thouless (BKT) transition temperature, ρn (green curve), (1 − ρn) (sky-blue curve), and the condensate fraction N0/N
(purple line), where N0 is the population of the zero-wave-number mode. Figure 1(b) shows the temperature dependence

of α(T ) and B = 2α/ ρn

ρ
, determined using the initial configurations ψIC1 and ψIC2.

In the second part of our study, we use values for the mutual-friction coefficients, which are comparable to those we obtain

from the first part of our study, in the DNSs of 2D HVBK equations, which we have designed to study the statistical

properties of inverse and forward cascades. We find the following: (1) Both normal-fluid and superfluid energy spectra,

En(k) and Es(k), respectively, show inverse- and forward-cascade power-law regimes (Fig. 2(a)). (2) The forward-

cascade power law depends on (a) the friction coefficient, as in 2D fluid turbulence, and, in addition, on (b) the coefficient
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Figure 1. (a) The condensate fraction N0/N (purple line), the normal fluid density ρn (green line), and 1 − ρn (sky-blue line)

versus T/T̃BKT ; (c) the mutual friction coefficients αIC1 (purple line) and αIC2 (green line) versus T/T̃BKT ; (d) B = 2α/ ρn
ρ

versus

T/T̃BKT .

10
0

10
1

10
210

−10

10
−8

10
−6

10
−4

10
−2

k

E
(k

)

k−5/3

k−4.2

 

 

NF, ρ
n
/ρ=0.05

SF
NF, ρ

n
/ρ=0.1

SF
NF, ρ

n
/ρ=0.3

SF
NF, ρ

n
/ρ=0.5

SF
NF, ρ

n
/ρ=0.9

SF
(a)

−1 −0.5 0 0.5 1
10

−4

10
−2

10
0

10
2

cos( θ)

P
(c

os
(θ

))

 

 

R1
R2a
R2b
R2c

(b)

Figure 2. (a) Log-log plots of the energy spectra En(k) (full lines) and Es(k) (dashed lines) from our DNS runs; inverse and forward

cascades are shown for different ratios of ρn/ρ (the abbreviation NF (SF) stands for normal-fluid (superfluid)). (b) Semilogarithmic

(base 10) plots of the PDF P (cos(θ)) of the angle θ between un and us for runs R1 (red circles), R2a (B = 1, blue squares), R2b

(B = 2, green diamonds), and R2c (B = 5, purple triangles). For the DNS run R1, the external forcing wave number kf = 2; for all

other DNS runs shown in the two plots kf = 50. (See Ref. [2] for run parameters.)

B of mutual friction, which couples normal and superfluid velocities. (3) As B increases, the normal and superfluid

velocities, un and us, respectively, tend to get locked to each other, and, therefore, Es(k) ≃ En(k). (4) We quantify

this locking tendency by calculating the probability distribution functions (PDFs) P (cos(θ)) and P (γ), where the angle

θ ≡ cos−1((un · us)/(|un||us|)) and the amplitude ratio γ = |un|/|us|; the former has a peak at cos(θ) = 1 (Fig. 2(b));

and the latter exhibits a peak at γ = 1 and power-law tails on both sides of this peak. (5) This locking increases as we

increase B, but the power-law exponents for the tails of P (γ) are universal, in so far as they do not depend on B, ρn/ρ,

and the forcing wave number kf .
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