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Abstract We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical
magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with
remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical?
We restrict attention to low-magnetic-Reynolds number (Rm) flow. Because liquid metals have low magnetic Prandtl number, such
low-Rm flows can have a kinetic Reynolds number as large as Re ' 106 and therefore be strongly turbulent.
We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm → 0: we prove
that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N
is larger than a threshold value. We call this property absolute two-dimensionalization: the attractor of the system is necessarily a
(possibly turbulent) 2D flow.
We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N , the flow
becomes exactly two-dimensional in the long-time limit provided the initial vertically-dependent perturbations are infinitesimal. We call
this phenomenon linear two-dimensionalization: the (possibly turbulent) 2D flow is an attractor of the dynamics, but it is not necessarily
the only attractor of the system. Some 3D attractors may also exist and be attained for strong enough initial 3D perturbations.
These results shed some light on the existence of a dissipative anomaly for magnetohydrodynamic flows subject to a strong external
magnetic field.

Liquid metal turbulence is encountered in various situations, ranging from metallurgy [1] to the flow in the Earth’s outer
core [2], including laboratory experiments on magnetohydrodynamic (MHD) turbulence [3, 4]. Because their kinematic
viscosity is much lower than their magnetic diffusivity, with magnetic Prandtl numbers Pm typically in the range of 10−6

to 10−5, flows of liquid metals can be turbulent and still be characterized by a small magnetic Reynolds number: in most
laboratory experiments on MHD turbulence, the kinetic Reynolds number is in the range 104 − 106, with a magnetic
Reynolds number rarely exceeding unity. At small enough scales, turbulence in Earth’s outer core may also be considered
as a low-Rm flow.

BODY-FORCED MAGNETOHYDRODYNAMICS

We consider the setup sketched in the left-hand panel of figure 1: an incompressible fluid of kinematic viscosity ν,
density ρ and electrical conductivity σ flows inside a domain (x, y, z) ∈ D = [0, L] × [0, L] × [0, H] with a Cartesian
frame (ex, ey, ez). It is stirred by a time-independent divergence-free two-dimensional horizontal body-force f(x, y) =
(fx, fy, 0) that is periodic on a scale `, an integer fraction of L. That is, f(x, y) = φ(x

` ,
y
` ), where φ is periodic of period

1 in each dimensionless variable.
A homogeneous steady vertical magnetic field B0ez is applied to the system. The magnetic field inside the fluid follows
the induction equation, which using the decomposition B(x, y, z, t) = B0ez + b(x, y, z, t) reads

∂tb + (u ·∇)b− (b ·∇)u = B0∂zu + η∆b , ∇.b = 0 , (1)

where η = 1/(µ0σ), with µ0 the magnetic permeability of vacuum. The velocity field follows the body-forced Navier-
Stokes equation with the Lorentz force

∂tu + (u ·∇)u = −∇p+ ν∆u + f(x, y) +
1

ρµ0
(∇× b)× (B0ez + b) , ∇.u = 0 . (2)

From equations (1) and (2) we define the kinetic and magnetic Reynolds numbers, and the interaction parameter N , using
the root-mean-square velocity U , where the mean is performed over space and time:

Re =
U`

ν
, Rm =

U`

η
, N =

σB2
0`

ρU
. (3)

N is a dimensionless measure of the strength of the external field B0.
A simpler set of equations can be obtained in the quasi-static limit Rm→ 0,

∂tu + (u ·∇)u = −∇p+ ν∆u + f(x, y)− β∆−1∂zzu , ∇.u = 0 , (4)



where β is the inverse Joule time scale corresponding to magnetic damping, β = σB2
0/ρ. It is related to the interaction

parameter through N = β`/U . The main convenience of the quasi-static equation (4) is that it involves the velocity field
only.
The magnetohydrodynamic problem (1-2) and its quasi-static version (4) admit two-dimensional solutions of the form
u = V(x, y, t), b = 0, where V(x, y, t) satisfies a standard non-magnetic two-dimensional Navier-Stokes equation. We
prove that, for large enough interaction parameter, such motion is robust with respect to three-dimensional perturbations,
i.e., the three-dimensional part of the velocity field decays in the long-time limit, and the system relaxes to a 2D flow.
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Figure 1. Left-hand panel: flow of an electrically-conducting newtonian fluid subject to a uniform vertical magnetic field B0. It
is driven by a horizontal body-force f that is independent of the vertical. we assume periodic boundary-conditions in the horizontal,
and stress-free boundaries with large magnetic-permeability at z = 0 and z = H . Right-hand panel: a sketch of the bounds in
parameter space, for the quasi-static case and single-mode forcing. Above the linear two-dimensionalization line, the flow has a stable
2D attractor. However, this attractor is stable for small 3D perturbations only, and fully 3D attractors of the system may exist as well.
Above the absolute two-dimensionalization line, the flow has only 2D attractors.

RESULTS

Using rigorous analysis and estimates, we derive sufficient criteria on N and Rm for the 2D flow to be robust to 3D
perturbations. An example of the results obtained in the quasi-static approximation is provided in the right-hand panel
of figure 1, for a body force f corresponding to a single horizontal Fourier-mode. We show the regions of the parameter
space (Re,N) in which we prove two-dimensionalization: above the lower curve the 2D flow is stable with respect to
infinitesimal 3D perturbations, i.e., the possibly turbulent 2D flow is an attractor of the dynamics. Above the upper curve,
the system is robust to 3D perturbations of arbitrary amplitude, and the flow is necessarily 2D.
The asymptotic state of turbulence in the limit of infinitely strong applied B0 and vanishing viscosity therefore depends
on how one takes the double limit (Re,N) → (∞,∞). We show that if one takes this limit with N & Re(lnRe)2, the
flow has a 2D attractor with an energy dissipation rate per unit mass ε . ν U2

`2 , i.e., there is no energy dissipative anomaly
in this limit of MHD turbulence.
More general results on the full MHD equations will also be presented [5].
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