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Abstract Since the pioneering work of Richardson in 1926, later refiog Batchelor and Obukhov in 1950, it is predicted that the
rate of separation of pairs of fluid elements in turbulent #evith initial separation at inertial scales, grows baliially first (Batchelor
regime), before undergoing a transition towards a sug@isilie regime where the mean-square separation grow$ @ichardson
regime). Richardson empirically interpreted this sugéfusive regime in terms of a non-Fickian process with a sad¢pendent
diffusion coefficient (the celebrated Richardson’s “4/3a). However, the actual physical mechanism at the orafisuch a scale
dependent diffusion coefficient remains unclear. The mtes®rk proposes a simple physical phenomenology for théndason
super-diffusivity in turbulence based on a scale depenui@hittic scenario rather than a scale dependigifiisive scenario. It is shown
that this phenomenology elucidates several aspects aflartdispersion: (i) it gives a simple physical explanatid the origin of the
super diffusive® Richardson regime as an iterative cascade of scale-depemaléistic separations, (ii) it simply relates the Riatson
constant to the Kolmogorov constant (and eventually to kshialpersistence parameter), (iii) it gives a simple pbgkinterpretation
of the non-Fickian scale-dependent diffusivity coeffitias originally proposed by Richardson and (iv) a furtheepsion of the
phenomenology, taking into account higher order correstto the local ballisitic motion, gives a robust interptietaof the assymetry
between forward and backward dispersion, with an explmiinection to the energy flux accross scales.

INTRODUCTION

In his seminal article on relative dispersion in 1926 [1clRirdson gave an interpretation of turbulent super-ddfum
terms of a non-Fickian process which could be locally madiekea normal diffusion process, but with a scale dependent
diffusion coefficientK’ which depends on particle separatibn according to the celebrated Richardson’s 4/3rd law :
K (D) « D*/3. Besides, Richardson showed that this non-Fickian diffusésulted in a cubic super-diffusive growth of
the mean square separation of pairs of particles accorditigatlaw(D2> = get®, wheree is the turbulent energy dissi-
pation rate ang a universal constant since known as the Richardson constathie framework of K41 phenomenology
of turbulence theé* dependency can be understood as a simple dimensional@iohsivhen initial separation is ignored.
Richardson’s work was later refined by Batchelor and Obukihathe 1950s [2], who pointed that while the loss of
memory of initial separation is a reasonable assumptiothfotong-term dispersion, initial separation must playla ho

the short-term. They showed that the rate of separationics p&fluid elements in turbulent flows with initial sepati

Dy at inertial scales must obey the following scalings :
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with Sy (7) = <|6Fﬁ|2> the full second order Eulerian structure function of theoedy field (with 0> the increment

between two points separated by a vec¢torf the eulerian velocity field of the flow ; note that homogéyne assumed,
so that velocity increment only depends on the separatiotoreandt, a characteristic time scale of the particles motion

at the initial scaleDy. In K41 framework, inertial scalings fa¥, andtg areSQ(ﬁo) x 52/3D(2)/3 (where local isotropy

is also assumed so th&t () only depends on the norm of the separation vecter \/W) andty e‘l/3D§/3 (to
then represents the eddy turnover time at séaj¢ Formally speaking, the initial ballistic regime (eq. is)nothing
but the leading term of the Taylor expansion for the mean regpair separation at short times, expressed in terms of
the initial mean square relative velocity between paricldote that such a ballistic Taylor expansion is a generdl an
purely kinematic relation valid for any early dispersiomgess and is not limited to the case of turbulence. Spew@fcit
of turbulence only appear when expliciting the form of thresture functionS; at inertial scales. This short-term ballistic
regime has been shown to be accurately and robustly follinvexieriments of relative pair dispersion within the inadrt
scales of 3D-turbulence [3]. For times exceedifca transition is expected towards an enhanced dispergianegcubic

in time and independent of initial separaion, as originpiigdicted by Richardson. The Richardson consjanteq. 1b is
one of the most fundamental constants in turbulence (tegetlth the Kolmogorov constaidt,). It plays a major role in
turbulent dispersion and mixing processes. Most recefitt@golution direct numerical simulations seem to pointtiav

a robust estimate af ~ 0.5 — 0.6 [4, 5, 6], in agreement with the experiment by Ott & Mann [7].

A BALLISTIC CASCADE PHENOMENOLOGY

| propose here a very simple phenomenology for Richardsaper-diffusivity, built on important previous works em-
phasizing the possible leading role of short term baltigitiocesses [8, 9, 3, 10]. The main idea behind the dispersive
process proposed here is that of an iterative ballisticagenas illustrated in figure 1a: a set of particle pairs witfiven
initial separationD, starts to disperse ballistically, with a separation gt€D,) over a given period, after which the
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Figure 1. (a) Iterative ballisitic scheme. (b) Mean square sepanad® a function of time predicted by the iterative ballisjttze-
nomenology, for different initial separations. In partanthe transition towards the Richardson cubic separasiavell captured.

mean square separation has growrp = D2 + S»(Dy)t2 (following the elementary short term ballisitic regime, as
given by eq 1a), then instead of considering#far t, a sudden transition towards an enhanced cubic dispergiimee
(as in eq. 1b), the same elementary ballistic process @tédy but starting from the new initial mean square separati
D2, hence with a new separation ratg( D, ) which operates over a new period of tityeand so on. Thus, in this scenario
the time evolution of particles mean square separatiomiplgidescribed by the iterative scheme :

So(Dy) = Ce2/3DY/?

Dl%Jrl = Di + SQ(Dk)t;c(Dk) with { t (Dk) = aty = OéSQ(Dk;)/2€ (2)
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whereD? =< |ﬁ,C |> > represents the mean square separation of pairs kt'tlieration stept, (Dy,) is a scale dependent
“time of flight” characteristic of the duration of the batlismotion at stegk + 1. S2(Dy) andt} (Dy), are given by K41
scalings, withzlpha a parameter characteristic of the persistence of the l@ddtic separation. Substituting the explicit
expressions fof2(Dy,) andt),(Dy) in (2) into the iteration equation fab? leads to a simple geometrical progression
(and hence to an exponential growth with the iteration nuiyibeth for the mean square separatiop and the ballisitic
time scalet;, which result in the overall separation law :
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whereT}, = 25*1152 represents the total time up to th& iteration.
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DISCUSSION

Interestingly, eq. 3 shows that this very simple iteratia#isitic phenomenology trivially builds & long term dispersive
regimeD? = ¢T}}, where the Richardson constant is directly related to thienkigorov constan€ and the persistence
parametery. During ETC15, | will present a quantitative comparison ligtsimple model predictions with existing
numerical and experimental data, which validates the weg®cenario as a realistic description of turbulent super-
diffusion. | will also show how this approach can be relatedhte original non-Fickian idea by Richardson. Besides,
I will present a simple extension of the phenomenology anting for the wellknown backward / forward temporal
asymetry of pair dispersion in turbulence. Alltogethee present phenomenology therefore builds a simple corarecti
between the Lagrangian problem of pair dispersion and thal &silerian approach of turbulent energy cascade, where th
mean square separation rate is directly related to the iBnlenergy spectrum (or equivalently$g) and the Kolmogorov
constant, while the temporal asymetry is related to theggrfiurx accross scales (hence with differents trends foaimes

for a 3D direct cascade and a 2D inverse cascade).
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