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Abstract Since the pioneering work of Richardson in 1926, later refined by Batchelor and Obukhov in 1950, it is predicted that the
rate of separation of pairs of fluid elements in turbulent flows with initial separation at inertial scales, grows ballistically first (Batchelor
regime), before undergoing a transition towards a super-diffusive regime where the mean-square separation grows ast

3 (Richardson
regime). Richardson empirically interpreted this super-diffusive regime in terms of a non-Fickian process with a scale dependent
diffusion coefficient (the celebrated Richardson’s “4/3rd” law). However, the actual physical mechanism at the originof such a scale
dependent diffusion coefficient remains unclear. The present work proposes a simple physical phenomenology for the Richardson
super-diffusivity in turbulence based on a scale dependentballistic scenario rather than a scale dependentdiffusive scenario. It is shown
that this phenomenology elucidates several aspects of turbulent dispersion: (i) it gives a simple physical explanation of the origin of the
super diffusivet3 Richardson regime as an iterative cascade of scale-dependent ballistic separations, (ii) it simply relates the Richardson
constant to the Kolmogorov constant (and eventually to a ballistic persistence parameter), (iii) it gives a simple physical interpretation
of the non-Fickian scale-dependent diffusivity coefficient as originally proposed by Richardson and (iv) a further extension of the
phenomenology, taking into account higher order corrections to the local ballisitic motion, gives a robust interpretation of the assymetry
between forward and backward dispersion, with an explicit connection to the energy flux accross scales.

INTRODUCTION

In his seminal article on relative dispersion in 1926 [1], Richardson gave an interpretation of turbulent super-diffusion in
terms of a non-Fickian process which could be locally modeled as a normal diffusion process, but with a scale dependent
diffusion coefficientK which depends on particle separationD, according to the celebrated Richardson’s 4/3rd law :
K(D) ∝ D4/3. Besides, Richardson showed that this non-Fickian diffusion resulted in a cubic super-diffusive growth of
the mean square separation of pairs of particles according to the law

〈

D2
〉

= gǫt3, whereǫ is the turbulent energy dissi-
pation rate andg a universal constant since known as the Richardson constant. In the framework of K41 phenomenology
of turbulence thet3 dependency can be understood as a simple dimensional constraint, when initial separation is ignored.
Richardson’s work was later refined by Batchelor and Obukhovin the 1950s [2], who pointed that while the loss of
memory of initial separation is a reasonable assumption forthe long-term dispersion, initial separation must play a role in
the short-term. They showed that the rate of separation of pairs of fluid elements in turbulent flows with initial separation
~D0 at inertial scales must obey the following scalings :

R2 =

〈

(

~D − ~D0

)2
〉

=

{

S2( ~D0)t
2 if t < t0 (1a)

gǫt3. if t > t0 (1b)

with S2(~r) =
〈

|δ~r~u|
2
〉

the full second order Eulerian structure function of the velocity field (with δ~r~u the increment

between two points separated by a vector~r of the eulerian velocity field of the flow ; note that homogeneity is assumed,
so that velocity increment only depends on the separation vector) andt0 a characteristic time scale of the particles motion
at the initial scaleD0. In K41 framework, inertial scalings forS2 andt0 areS2( ~D0) ∝ ǫ2/3D

2/3

0 (where local isotropy

is also assumed so thatS2(~r) only depends on the norm of the separation vectorr =
√

|~r|2) andt0 ∝ ǫ−1/3D
2/3

0 (t0
then represents the eddy turnover time at scaleD0). Formally speaking, the initial ballistic regime (eq. 1a)is nothing
but the leading term of the Taylor expansion for the mean square pair separation at short times, expressed in terms of
the initial mean square relative velocity between particles. Note that such a ballistic Taylor expansion is a general and
purely kinematic relation valid for any early dispersion process and is not limited to the case of turbulence. Specificities
of turbulence only appear when expliciting the form of the structure functionS2 at inertial scales. This short-term ballistic
regime has been shown to be accurately and robustly followedin experiments of relative pair dispersion within the inertial
scales of 3D-turbulence [3]. For times exceedingt0, a transition is expected towards an enhanced dispersion regime, cubic
in time and independent of initial separaion, as originallypredicted by Richardson. The Richardson constantg in eq. 1b is
one of the most fundamental constants in turbulence (together with the Kolmogorov constantC2). It plays a major role in
turbulent dispersion and mixing processes. Most recent high resolution direct numerical simulations seem to point toward
a robust estimate ofg ∼ 0.5 − 0.6 [4, 5, 6], in agreement with the experiment by Ott & Mann [7].

A BALLISTIC CASCADE PHENOMENOLOGY

I propose here a very simple phenomenology for Richardson’ssuper-diffusivity, built on important previous works em-
phasizing the possible leading role of short term ballisitic processes [8, 9, 3, 10]. The main idea behind the dispersive
process proposed here is that of an iterative ballistic scenario, as illustrated in figure 1a: a set of particle pairs witha given
initial separationD0 starts to disperse ballistically, with a separation rateS2(D0) over a given periodt0 after which the
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Figure 1. (a) Iterative ballisitic scheme. (b) Mean square separation as a function of time predicted by the iterative ballisiticphe-
nomenology, for different initial separations. In particular, the transition towards the Richardson cubic separation is well captured.

mean square separation has grown toD2
1 = D2

0 + S2(D0)t
2
0 (following the elementary short term ballisitic regime, as

given by eq 1a), then instead of considering fort > t0 a sudden transition towards an enhanced cubic dispersion regime
(as in eq. 1b), the same elementary ballistic process is iterated, but starting from the new initial mean square separation
D2

1, hence with a new separation rateS2( ~D1) which operates over a new period of timet1 and so on. Thus, in this scenario
the time evolution of particles mean square separation is simply described by the iterative scheme :

D2
k+1 = D2

k + S2(Dk)t′k(Dk) with

{

S2(Dk) = Cǫ2/3D
2/3

k

t′k(Dk) = αtk = αS2(Dk)/2ǫ
, (2)

whereD2
k =< | ~Dk|

2 > represents the mean square separation of pairs at thekth iteration step,t′k(Dk) is a scale dependent
“time of flight” characteristic of the duration of the ballistic motion at stepk + 1. S2(Dk) andt′k(Dk), are given by K41
scalings, withalpha a parameter characteristic of the persistence of the local ballistic separation. Substituting the explicit
expressions forS2(Dk) andt′k(Dk) in (2) into the iteration equation forD2

k leads to a simple geometrical progression
(and hence to an exponential growth with the iteration number) both for the mean square separationD2

k and the ballisitic
time scaletk, which result in the overall separation law :

D2
k = gǫ

[

Tk +

(

D2
0

gǫ

)1/3
]3

with g =

[

2
(1 + α2C3

. 4)1/3 − 1

αC

]3

(3)

whereTk = Σk−1

j t′k represents the total time up to thekth iteration.

DISCUSSION

Interestingly, eq. 3 shows that this very simple iterative ballisitic phenomenology trivially builds at3 long term dispersive
regimeD2

k = gT 3
k , where the Richardson constant is directly related to the Kolmogorov constantC and the persistence

parameterα. During ETC15, I will present a quantitative comparison of this simple model predictions with existing
numerical and experimental data, which validates the proposed scenario as a realistic description of turbulent super-
diffusion. I will also show how this approach can be related to the original non-Fickian idea by Richardson. Besides,
I will present a simple extension of the phenomenology accounting for the wellknown backward / forward temporal
asymetry of pair dispersion in turbulence. Alltogether, the present phenomenology therefore builds a simple connection
between the Lagrangian problem of pair dispersion and the usual Eulerian approach of turbulent energy cascade, where the
mean square separation rate is directly related to the Eulerian energy spectrum (or equivalently toS2) and the Kolmogorov
constant, while the temporal asymetry is related to the energy flux accross scales (hence with differents trends for instance
for a 3D direct cascade and a 2D inverse cascade).
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