LOGARITHMIC VARIANCE PROFILES AND THE CORRESPONDING f^{-1} SPECTRA OF TEMPERATURE FLUCTUATIONS IN TURBULENT RAYLEIGH-BÉNARD CONVECTION

Xiaozhou He1,3, Dennis van Gils1,3, Eberhard Bodenschatz1,3 & Guenter Ahlers1,2,3
1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
2Department of Physics, University of California, Santa Barbara, CA, USA
3International Collaboration for Turbulence Research

Abstract We report experimental results for the temperature variance $\sigma^2(z)$ and the corresponding frequency spectra $P(f)$ in turbulent Rayleigh-Bénard convection (RBC) in a cylindrical sample of aspect ratio $\Gamma = D/L = 1.00$ ($D = 1.12$ m is the diameter and $L = 1.12$ m the height). The measurements were conducted in the Rayleigh-number range $10^{11} \leq Ra \leq 1.35 \times 10^{14}$ and Pr $\simeq 0.8$. For $Ra = 1.35 \times 10^{14}$, $\sigma^2(z)$ could be described well by a logarithmic dependence on the vertical position z in a range of $z^\ast \leq z \leq z^\ast_2$ with $z^\ast_1 \simeq 70\lambda_0$ and $z^\ast_2 = 0.1L$. Here $\lambda_0 \equiv L/(2Nu)$ is the thickness of a thin thermal sublayer adjacent to the horizontal plate where the heat flux (denoted by the Nusselt number Nu) is carried mostly by thermal diffusion. In the log layer, we found that the temperature spectra had a significant frequency range over which $P(f) \sim f^{-\alpha}$ with α close to 1. As Ra decreased, λ_0 increased so that the log layer became thinner. At $Ra = 2.05 \times 10^{11}$, $z^\ast_2 \lesssim z^\ast_1$ and therefore there was no range for a log layer. Correspondingly, the temperature spectrum near the horizontal plate did not have the f^{-1} scaling form either.

Details about the RBC sample and experimental procedures were reported in Refs. [1, 2]. In the present work, we installed 68 new thermistors to measure temperature fluctuations. These thermistors were positioned in 6 columns at various radial locations r from 1.0 cm to 15.0 cm away from the side wall within the sample. The thermistor diameters were 0.36 mm. The vertical positions of the thermistors were distributed over a range of $0.013 \leq z/L \leq 0.990$, symmetrically about the mid-height of the sample. They were known with a precision of 1 mm. The sample was carefully leveled relative to gravity to within 10^{-4} rad. For temperature spectral measurements we used an ac bridge and a lock-in amplifier for each thermistor. Each amplifier was operated at a working frequency in the range $f_0 \sim 1 \pm 0.4$ kHz to measure temperatures at a rate of 40 Hz.

Figure 1 shows the results for the temperature variance profiles $\sigma^2(z)$ at the radial position $\xi = 0.064$ for different Ra. The vertical position z is scaled by the length $\lambda_0 \equiv L/(2Nu)$. Here λ_0 is the thickness of a thin thermal sublayer adjacent to the horizontal plate where the heat flux is carried mostly by thermal diffusion. This thermal sublayer in RBC plays a role similar to the viscous sublayer in wall-bounded shear flow. At the highest $Ra = 1.35 \times 10^{14}$, the data follow closely a logarithmic dependence on the vertical position z in a range of $z^\ast_1 \simeq z \leq z^\ast_2$ with $z^\ast_1 \simeq 70\lambda_0$ and $z^\ast_2 = 0.1L$. When Ra decreases, λ_0 increases and the log-layer upper limit z^\ast_2/λ_0 decreases. As a result, the log-layer range becomes smaller. At $Ra = 2.05 \times 10^{11}$, $z^\ast_2/\lambda_0 \lesssim z^\ast_1/\lambda_0$ and therefore there is no range for the log layer of $\sigma^2(z)$.

In Fig. 2 we show the compensated temperature frequency spectra $(fT_0) \times P(fT_0)$ as a function of the normalized frequency fT_0 measured at $z/L = 0.019$ and $\xi = 0.064$ for different Ra. Here T_0 is a characteristic time scale determined from the temperature auto-correlation function [3]. The two spectra, although measured at the same distance from the bottom plate, correspond to different z/λ_0 because of different Ra. For $Ra = 1.35 \times 10^{14}$ the measuring positions is inside the log layer with $z/\lambda_0 \sim 101$. In the low-frequency range $0.02 \leq fT_0 \leq 0.2$ the compensated spectrum has the scaling $P(fT_0) \sim (fT_0)^{-\alpha}$ with $\alpha \simeq 1$, as indicated by a plateau of $(fT_0) \times P(fT_0)$. This spectral scaling form and the corresponding logarithmic profile are consistent with previous measurements for $z/L \lesssim 0.1$ in a $\Gamma = 0.50$ sample with Ra above 1.63×10^{13} [3]. For $Ra = 2.05 \times 10^{11}$ the measuring position corresponds to $z/\lambda_0 \sim 12.7$. Because there is no log layer as shown in Fig. 1 (c), the corresponding spectrum does not have the f^{-1} scaling. These temperature variance profiles and the corresponding frequency spectra in turbulent RBC share many similarities with predictions for the variance profiles and the wave-number spectra of velocity fluctuations in the log layer of turbulent pipe flow $[4, 5]$

We are grateful to the Max-Planck-Society and the Volkswagen Stiftung, whose generous support made the establishment of the facility and the experiments possible. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of G.A. was supported in part by the U.S National Science Foundation through Grant DMR11-58514.

References

[1] G. Ahlers, X. He, D. Funfschilling, and E. Bodenschatz. Heat transport by turbulent Rayleigh-Bénard convection for Pr $\simeq 0.8$ and 3×10^{12} $\lesssim Ra \lesssim 10^{15}$: Aspect ratio $\Gamma \equiv D/L = 0.50$. New J. Phys. 14: 103012 (39p), 2012.
Figure 1. (a) Measured temperature variance $\sigma^2(z)$ as a function of the normalized vertical position z/λ_θ on a logarithmic horizontal scale for the three Rayleigh numbers (a) $Ra = 1.35 \times 10^{14}$, (b) 4.38×10^{12}, and (c) 2.05×10^{11}. The vertical solid lines are at $z/\lambda_\theta = 70$. Three vertical dashed lines represent $z/L = 0.1$. The red solid line in (a) is a fit to the data for $z/L < 0.1$ using the logarithmic function $\sigma^2(z,r) = M(r) \cdot \ln(z/L) + N(r)$. All measurements were for the normalized radial location $\xi \equiv (R - r)/R = 0.064$.

Figure 2. Normalized temperature spectra $(f\tau_0) \times P(f\tau_0)$ as a function of $f\tau_0$ at $z/L = 0.019$ for $Ra = 1.35 \times 10^{14}$ (black solid line) and 2.05×10^{11} (red dashed line). All measurements were for the normalized radial location $\xi \equiv (R - r)/R = 0.064$.