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Abstract
It is well known that fully developed turbulent free shear layers exhibit a high degree of order, characterized by large-scale coherent
structures, i.e. spanwise vortex rollers. Extensive experimental investigations show that such organised motions bear remarkable re-
semblance to inviscid instability waves, and their main characteristics, including the length scales, propagation speeds and transverse
structure, are reasonably well predicted by inviscid linear stability analysis of the mean flow. In this paper, we present a mathematical
theory to describe the nonlinear dynamics of coherent structures. The theory is adapted from the nonlinear non-equilibrium critical-
layer approach for laminar-flow instabilities by accounting for (a) the enhanced non-parallelism associated with fast spreading of the
mean flow, and (b) the influence of small-scale turbulence on coherent structures. The combination of these factors with nonlinearity
leads to an interesting evolution system, consisting of the coupled amplitude and vorticity equations, in which non-parallelism con-
tributes the so-called translational critical-layer effect. Numerical solutions of the evolution system captures vortex roll-up, which is
the hallmark of turbulent mixing layer, and the predicted amplitude development closely mimics what was measured in experiments.
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INTRODUCTION AND SKETCH OF A NONLINEAR THEORY

It has been widely recognized since 1970s that orderly and quasi-deterministic fluctuations, characterized by coherent
structures (CS), are present in turbulent shear flows. Brown & Roshko (1974) provided the first visualizations of CS in
a high-Reynolds-number plane turbulent mixing layer. The striking pictures showed clearly that CS were predominantly
two dimensional and consisted of an array of spanwise concentrated vortices. These vortices propagate at a constant speed,
which is approximately the average of the free stream velocities. The origin and development of CS have been extensively
investigated for several decades. It has long been suggested that CS are Kelvin-Helmholtz vortices arising from small
perturbations as a result of instability of the mean flow. Experiments using controlled excitations have provided much
information about the kinematics and dynamics of CS. Gaster, Kit & Wygnanski (1985) carried out detailed measurements
for a relatively low level excitation. The characteristics wavelength, propagation speed and transverse distribution of
CS were found to correspond to those of the linear instability mode of the mean flow, but the growth rate exhibited
considerable discrepancy. Fiedler & Mensing (1985) investigated CS forced by a periodic disturbance of various frequency
and amplitude. For weak excitations, the evolution of CS with different frequencies follows a universal rule. For strong
excitations, the decay is oscillatory. Weisbrot & Wygnanski (1988) found that the transverse distribution of the velocities
and Reynolds stress were well predicted by the linear stability analysis of the mean flow even at high level excitation.
In this paper, we propose a theory for the nonlinear development of CS. The instantaneous field is composed of a mean
flow (Ū, P̄ ), coherent motion (ũ, p̃) and small-scale turbulence (u′, p′), and thus has the triple decomposition

(u, p) = (Ū, P̄ ) + (ũ, p̃) + (u′, p′). (1)

Unlike the conventional treatment (Hussain & Reynolds 1972), here we take (Ū, P̄ ) to be the ‘partial mean flow’ driven
only by the Reynolds stresses of (u′, p′), while the mean flow generated by (ũ, p̃) is to be treated as part of CS.
For the time-averaged Reynolds stresses, the model is, in the non-dimensional form, written as

τ̄ij = u′

iu
′

j = −

1

RT
(∂Ūi/∂xj + ∂Ūj/∂xi),

where the mean turbulent Reynolds number RT = ρUδ/µt with µ̄t being a mean eddy viscosity. The phase-averaged
Reynolds stresses are time dependent, and they are related to the time-dependent strain rate of CS by a gradient type of
model that includes the effect of time relaxation (Wu & Zhou 1989), that is,

τ̃ij =< u′

iu
′

j > −u′

iu
′

j = −

1

R̃T

(∂ũi/∂xj + ∂ũj/∂xi)(x, t − τ̂ ), (2)

where R̃T = ρUδ/µ̃t with µ̃t being an eddy viscosity accounting for the impact of small-scale turbulence on CS.
Coherent structures are to be represented by a dominant instability mode with a frequency. Following the initial exponen-
tial growth, it becomes neutral at some streamwise location, in the vicinity of which the disturbance enters a nonlinear
stage due to enhanced nonlinearity associated with emergence of a critical layer as in the laminar flows.
In the main part of the shear layer, the disturbance may be written as (Wu & Tian 2012)

εĀ(x̄, τ) ei ζ̄ where ζ̄ = α(x − ct), x̄ = ε
1

2 c−1x, τ = ε
1

2 t, (3)
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Figure 1. Nonlinear development of the amplitude Ā (solid line (a)). Dashed line (b): parallel-flow approximation; dotted line (c):
linear evolution.
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Figure 2. Vortex roll-up as shown by contours of critical layer vorticity at x̄ = 0 and x̄ = 2.

where α and c are the wavenumber and phase speed of the locally neutral mode respectively, and Ā is the amplitude
function of x̄ and τ . Within the critical layer, the effects of non-equilibrium, viscosity and nonlinearity all come into play
at leading order under the distinguished scalings that R̃T = O(R) = O(ε3/2). Crucially, we take RT = O(R2/3) so that
the non-parallel-flow effect appears also at leading order. We write

R−1 = λ̄1ε
3/2, R̃−1

T = λ̄2ε
3/2, σRT = R2/3. (4)

The nonlinear evolution of CS is governed by the coupled system for the amplitude Ā and the critical-layer vorticity Ω

[ ∂
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MAIN RESULTS

The nonlinear evolution is solved numerically for typical values of the parameters. The amplitude evolution is shown in
figure 1. Under the influence of both nonlinearity and non-parallelism, CS saturate and delay in an oscillatory manner
as observed in experiments. In contrast, when nonlinearity is ignored, CS decay rapidly and monotonically (dashed line)
while when non-parallelism is neglected, the amplitude increases slightly. Figure 2 shows that in the initial linear stage,
the vorticity field exhibits a simple cat’s eye pattern. As nonlinearity comes into play, the vorticity in the critical layer
rolls up to form concentrated vortices.
It may be concluded that the present theory is able to predict two key dynamic characteristics of CS: oscillatory decay of
their amplitudes, and formation of vortex rollers. Further results will be presented at the conference.
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