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Abstract We present the most extensive direct numerical simulations, attempted so far, of statistically steady, homogeneous, isotropic
turbulence in two-dimensional, binary-fluid mixtures withair-drag-induced friction. We model this mixture by using the Cahn-Hilliard-
Navier-Stokes equations and choose parameters, e.g., the surface tension, such that we have a droplet of the minority phase moving
inside a turbulent background of the majority phase. Our study reveals that a single droplet, whose mean radius lies in the inertial
range of scales, (a) enhances the the forward-cascade part of the energy spectrum of two-dimensional turbulence and (b)stretches the
tails of the PDF of the Okubo-Weiss parameterΛ. We show that the dynamics of the droplet is affected significantly by the turbulence
in the fluid. In particular, the PDFs of the components of the acceleration shows wide, non-Guassian tails. We characterize the time
dependence of the deformation of the droplet and show that itexhibits multifractality.

INTRODUCTION

Binary-fluid mixtures have played an important role in the understanding of the statistical mechanics of critical phenomena
at the consolute point above which the two fluids mix [see, e.g., Ref. [1, 2]], of the nucleation of droplets below the
coexistence curve [see, e.g., Ref. [3]], of spinodal decomposition [4], and of the late stages of phase separation [see,e.g.,
Ref. [5]]. It has also been recognized that turbulence in such binary-fluid mixtures can modify many aspects of phase
separation and the motion of droplets of one phase in the other. Here we investigate how the motion of an active droplet,
of the minority phase, modifies the statistical properties of turbulence in a binary-fluid mixture and also how the dynamics
of such a droplet is affected by this turbulence.

RESULTS

Our study, which is based on an extensive direct-numerical simulation (DNS), of the two-dimensional Cahn-Hilliard-
Navier-Stokes equations [see, e.g., Ref. [6]], in a parameter regime in which a single droplet moves inside a turbulent
fluid, yield very interesting results that we summarize below. We find that the fluid energy spectrumE(k) is modified in
two important ways by the droplet : (1)E(k) shows oscillations whose period is related inversely to themean radius of
the droplet; (2) the large-k tail of E(k) is enhanced by the droplet (Fig.1(a)). (In the absence of this droplet, our forcing
scheme yields a fluid-energy spectrum that is dominated by a forward cascade of the enstrophy.)
To characterize the effect of the droplet on the topology of the flow-field, we plot the probability distribution function
(PDF) of the Okubo-Weiss parameterΛ ≡ (ω2 − σ2)/8, whereω is the vorticity andσ2 =

∑
ij σijσij andσij =

∂iuj + ∂jui, whereui anduj are thei andj components of the fluid velocity, respectively;Λ > 0 (Λ < 0) in vortical
(extensional) regions of the flow. We show in Fig.1(b) that the tails of the PDF ofΛ fall less rapidly with|Λ| than they do
in the absence of the droplet.
To investigate the effect of fluid turbulence on the motion ofthe droplet, we obtain the PDF of the components of accel-
eration of the centre of mass of the droplet. This PDF shows wide tails (Fig.1(c)) and is reminiscent of the acceleration-
component PDFs of Lagrangian tracers in turbulent flows [7].We also obtain the deformationδ = S(t)

S0(t)
− 1 of the

droplet, where,S(t) is the perimeter of the droplet at timet andS0(t) is the perimeter of undeformed droplet, of equal
area, at timet = 0. Figure 2(a) shows that the PDF ofδ has wide tails when the surface tension is low. We give the
temporal evolution ofδ in Fig. 2(b). This shows intermittent spikes whose multifractality we characterize by obtaining
the singularity spectrum, which we show in Fig. 2(c).



10
0

10
210

−15

10
−10

10
−5

k/k
max

E
(k

)

(a)

−100 0 100
10

−10

10
−5

10
0

Λ/Λ
rms

P
(Λ

/Λ
rm

s)

(b)

−5 0 5

10
−2

10
0

a
y
/a

rms

P
(a

y/a
rm

s)

(c)

Figure 1. (Colour online) (a) Log-log plots (base10) versus the scaled wavenumberk
kmax

of the energy spectraE(k) for ν = 10−5,
with a droplet witha0 = 120, β = 0.025 (blue diamonds), single phase fluid (green circles), power-law scalingk−3.0 (red dashed
line) andk−4.3 (light blue dashed line) ; (b) PDFs of the Okubo-Weiss parameter Λ for a0 = 120, β = 0.016 (blue diamonds),
a0 = 120, β = 0.037 (green diamonds)a0 = 120, β = 0.062 (red diamonds) and single phase fluid (light blue circles); (c) PDFs
of ay of the center of mass of thea0 = 80, β = 0.037 droplet (blue circles), thea0 = 120, β = 0.037 droplet (green circles) and a
Gaussian curve (red circles). Herea0 is the radius of the initial, undeformed droplet,β is the surface tension parameter, andν is the
kinematic viscosity.
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Figure 2. (Colour online) (a) PDFs ofδ of thea0 = 120, β = 0.016 droplet (blue line),a0 = 120, β = 0.037 droplet (green line),
anda0 = 120, β = 0.062 droplet (red line); (b) plots versus timet/Teddy of the droplet deformationδ of thea0 = 120, β = 0.016

droplet (blue line),a0 = 120, β = 0.037 droplet (green line), anda0 = 120, β = 0.062 droplet (red line); (f) singularity spectraf(α)
versusα of thea0 = 120, β = 0.016 droplet (blue diamonds),a0 = 120, β = 0.037 droplet (green circles), anda0 = 120, β = 0.062

droplet (red circles).
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