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PRANDTL NUMBER DEPENDENCE OF KINETIC-TO-MAGNETIC DISSIPATION RATIO
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Abstract Using direct numerical simulations of three-dimensional hydromagneticturbulence, either with helical or non-helical forcing,
we show that the ratio of kinetic-to-magnetic energy dissipation always increases with the magnetic Prandtl number, i.e., the ratio of
kinematic viscosity to magnetic diffusivity. This dependence can always be approximated by a power law, but the exponent is not
the same in all cases. For non-helical turbulence, the exponent is around 1/3, while for helical turbulence it is between 0.6 and 2/3.
In the statistically steady state, the rate of the energy conversion from kineticinto magnetic by the dynamo must be equal to the
Joule dissipation rate. We emphasize that for both small-scale and large-scale dynamos, the efficiency of energy conversion depends
sensitively on the magnetic Prandtl number, and thus on the microphysical dissipation process. To understand this behavior, we also
study shell models of turbulence and one-dimensional passive and active scalar models. We conclude that the magnetic Prandtl number
dependence is qualitatively best reproduced in the one-dimensional model as a result of dissipation via localized Alfvén kinks.

TURBULENT ENERGY DISSIPATION

One of the central paradigms of hydrodynamic turbulence is the equivalence of large-scale energy injection and small-scale
dissipation into heat through viscosity—regardless of how small its value. However, magnetic fields provide an additional
important pathway for dissipating turbulent energy through Joule heating. The heating rates for both viscous and Joule
dissipation are proportional to the microphysical values of viscosityν and magnetic diffusivityη, respectively. The ratio
of these coefficients is the magnetic Prandtl number, PrM = ν/η. As these coefficients are decreasing, the velocity and
magnetic field gradients sharpen just enough so that the heating rates remain independent of these coefficients.

Figure 1. Sketch showing the flow of energy
injected by the forcing〈ρu · f 〉 and even-
tually dissipated viscously and resistively via
the termsǫK andǫM . Note that in the steady
state,ǫM must be balanced by−〈u·(J×B)〉.

While this picture is appealing and seemingly well confirmed,at least in spe-
cial cases such as for fixed values of PrM , questions have arisen in those cases
when the magnetic and fluid Reynolds numbers are changed in such a way
that their ratio changes. Hydromagnetic turbulence simulations exhibiting dy-
namo action have shown that the values of energy dissipationare then no
longer constant, and that their ratio scales with PrM [1, 2, 3, 4]. A sketch
showing the transfers in and out of the two energy reservoirs, EK = 〈ρu2/2〉
and EM = 〈B2/2µ0〉, is given in Figure 1. From this it is clear that, in
the steady state, the quantity−〈u · (J × B)〉 must be positive and equal to
〈ηµ0J

2〉.
As in [3], ǫK and ǫM are normalized by their sum,ǫT = ǫK + ǫM ,
which in turn is expressed in terms of the non-dimensional quantity Cǫ =
aǫT/〈ρu3

rmskf〉, wherea = 9π
√

3/4 ≈ 12.2 is a coefficient. First of all, note
that in all cases the energy ratioEK/EM is roughly independent of PrM but it
varies with ReM , as was demonstrated previously for the small-scale dynamo
[5]. For large-scale dynamos, the ratioEK/EM is essentially equal tok1/kf

[6], which is around0.3 in the present case. In Figure 2, we show the PrM

dependence ofǫK/ǫM for σ = 1 and 0. The simulations show that for bothσ = 1 and 0, the ratioǫK/ǫM scales with
PrM ,

ǫK/ǫM ∝ PrqM , (1)

but the exponent is not always the same. Forσ = 1, we findq ≈ 2/3 for both small and large values of PrM , while for
σ = 0, we findq ≈ 0.6 for PrM < 1 with Re≈ 80 andq ≈ 0.3 for PrM > 1 with Re≈ 460. For large-scale dynamos
(σ = 1), a similar scaling was first found for PrM ≤ 1 [1, 2], and later also for PrM ≥ 1 [4]. For PrM ≤ 1, this scaling
was also found for small-scale dynamos [3], but now we see that for PrM ≥ 1 the slope is smaller.
Our results for PrM > 1 are compatible with those of [7], who listed the kinetic and magnetic dissipation scales,ℓK =
(ν3/ǫK )1/4 andℓM = (η3/ǫM )1/4, respectively, for their decaying and forced hydromagnetic simulations at different
values of PrM . Computing the dissipation ratio from their Table 1 asǫK/ǫM = Pr3M (ℓK/ℓM )−4, we find that their data
for non-helical decaying turbulence are well described by the formulaǫK/ǫM ≈ 0.6 Pr0.55

M . For non-helically forced
turbulence with0.01 ≤ PrM ≤ 10, their data agree perfectly with our fitǫK/ǫM ≈ 0.4 Pr1/3

M (red filled symbols in
Figure 2). In their case, ReM increases with PrM , but its value is generally much larger than our values for PrM < 1. This
suggests that the1/3 scaling occurs for large enough magnetic Reynolds numbers and that our steeper fit for PrM ≤ 1
and the mismatch at PrM = 1 is a consequence of small values of ReM .



Figure 2. Dependence of the dissipation ratioǫK/ǫM on
PrM for large-scale dynamos (solid blue line) and small-
scale dynamos (dashed orange and red lines). The red filled
symbols and black plus signs correspond to the results of [7]
for forced and decaying turbulence, respectively, referred to
as SPP11 in the legend.

We emphasize that in view of Figure 1, the fraction of energy that
is being diverted to magnetic energy through dynamo action de-
pends on the term−〈u · (J × B)〉, and that this must be equal
to ǫM in the statistically steady state. This fraction is therefore
ǫM /ǫT and we may call it the efficiency of the dynamo. Remark-
ably, Figure 2 shows that there is a PrM dependence of the dy-
namo efficiency both with and without helicity. The presenceof
helicity in the forcing function can lead to magnetic field genera-
tion at the largest scale of the system. It is therefore also referred
to as a large-scale dynamo. Non-helical forcing leads to mag-
netic fields on scales that are typically somewhat smaller than the
energy-carrying scale of the turbulent motions.

DISSIPATION RATIO IN ONE-DIMENSIONAL MODELS

We can produce a stationary state where the ram pressure of the
flow from the left (x → −∞) can be balanced by the magnetic
pressure of a magnetic kink whenb → u0 for x → +∞ and
b → 0 for x → −∞. The resulting scaling in Figure 3 confirms
Equation (1) withq ≈ 0.55 for PrM > 1 andq ≈ 0.95 for PrM <
1.

Figure 3. Magnetic Prandtl number dependence in the
MHD model.

Here we find scalings that are broadly similar to those for tur-
bulent large-scale dynamos as well as small-scale dynamos for
PrM < 1, namely a slope between0.6 and0.7. For PrM = 1, the
profiles ofb(x) andu(x) are similar and resemble thetanhx/w
profile ofu in the passive scalar case. However, for both PrM ≪ 1
and≫ 1, the profiles ofb(x) andu(x) become asymmetric, which
is also the reason why we chose to integrate in a domain where
−x− > x+. For small values of PrM , i.e., whenη ≫ ν, the
magnetic field begins to ramp up slowly and quite far away from
x = 0. This leads to a corresponding decline ofu(x). On the
other hand, for large values of PrM , the value ofν (≫ η) is so
large that a certain imbalance ofu2 +b2−u2

0 implies only a small
slope inu(x), so|u′| must be small.
In the present work, he have extended earlier findings of a PrM

dependence of the kinetic-to-magnetic energy dissipationratio, ǫK/ǫM , to the regime of small-scale and large-scale
dynamos for PrM > 1 and at higher resolution than what was previously possible [4]. In most cases, our results confirm
earlier results that for large-scale dynamos, the ratioǫK/ǫM is proportionate to Pr0.6

M . Furthermore, we have shown that a
similar scaling with PrM can be obtained for a simple one-dimensional Alfvén kink, where ram pressure locally balances
magnetic pressure. Interestingly, in these cases kinetic energy dissipation is accomplished mainly by the irrotational part
of the flow rather than the solenoidal part as in the turbulence simulations presented here. We note in this connection that
the kinetic energy dissipation, which is proportional to〈2S2〉 = 〈(∇ × u)2〉 + 〈 4

3
(∇ · u)2〉, has similar contributions

from vortical and irrotational parts.
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