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PRANDTL NUMBER DEPENDENCE OF KINETIC-TO-MAGNETIC DISSIPATION RATIO
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Abstract Using direct numerical simulations of three-dimensional hydromagneticlence, either with helical or non-helical forcing,
we show that the ratio of kinetic-to-magnetic energy dissipation alwaysases with the magnetic Prandtl number, i.e., the ratio of
kinematic viscosity to magnetic diffusivity. This dependence can alwayapgproximated by a power law, but the exponent is not
the same in all cases. For non-helical turbulence, the exponent iscaid8, while for helical turbulence it is between 0.6 and 2/3.
In the statistically steady state, the rate of the energy conversion from kinggienagnetic by the dynamo must be equal to the
Joule dissipation rate. We emphasize that for both small-scale and tztgedynamos, the efficiency of energy conversion depends
sensitively on the magnetic Prandtl number, and thus on the microphgisgation process. To understand this behavior, we also
study shell models of turbulence and one-dimensional passive tinel scalar models. We conclude that the magnetic Prandtl number
dependence is qualitatively best reproduced in the one-dimensional m®a result of dissipation via localized Alfvén kinks.

TURBULENT ENERGY DISSIPATION

One of the central paradigms of hydrodynamic turbulendeggtuivalence of large-scale energy injection and snoalks
dissipation into heat through viscosity—regardless of hmalkits value. However, magnetic fields provide an adddion
important pathway for dissipating turbulent energy thiodgule heating. The heating rates for both viscous and Joule
dissipation are proportional to the microphysical valukgiscosity v and magnetic diffusivity), respectively. The ratio

of these coefficients is the magnetic Prandtl numbey; Brv/7. As these coefficients are decreasing, the velocity and
magnetic field gradients sharpen just enough so that thenbeates remain independent of these coefficients.

While this picture is appealing and seemingly well confirmadeast in spe-
cial cases such as for fixed values of Riquestions have arisen in those cases
when the magnetic and fluid Reynolds numbers are changedmaway <puf> <pu’/e> <2vpS*>
that their ratio changes. Hydromagnetic turbulence sitimurla exhibiting dy-
namo action have shown that the values of energy dissipatierthen no
longer constant, and that their ratio scales with;Hf, 2, 3, 4]. A sketch —<u +(JxB)>
showing the transfers in and out of the two energy reservaits= (pu?/2)
and Eyy = (B?/2u0), is given in Figure 1. From this it is clear that, in

. -y 2 OJE
the steady state, the quantitw - (J x B)) must be positive and equal to <B/2uo> el
(npoJ?).
As in [3], ex and ey are normalized by their sumgr = ex + ey,
which in turn is expressed in terms of the non-dimensionaintjty C. = Figure 1. Sketch showing the flow of energy

aer/{pud, ki), wherea = 97/3/4 =~ 12.2 is a coefficient. First of all, note injected by the forcingpu - f) and even-
that in all cases the energy ratitx / Fy is roughly independent of Rr but it  tually dissipated viscously and resistively via
varies with Reg,, as was demonstrated previously for the small-scale dynaffitermsex andey. Note that in the steady
[5]. For large-scale dynamos, the rafitx / F\; is essentially equal th, /k; stateen mustbe balanced by (u-(J x B)).
[6], which is around).3 in the present case. In Figure 2, we show thgy Pr
dependence ofi /ey for o = 1 and 0. The simulations show that for bath= 1 and 0, the ratiax /e, scales with
Pras,

EK/EM X PIIZJVD (1)

but the exponent is not always the same. &ct 1, we findg ~ 2/3 for both small and large values of Rr while for
o =0, we findq = 0.6 for Pry; < 1 with Re~ 80 andq ~ 0.3 for Pry; > 1 with Re =~ 460. For large-scale dynamos
(o = 1), a similar scaling was first found for pr< 1 [1, 2], and later also for Ry > 1 [4]. For Pry; < 1, this scaling
was also found for small-scale dynamos [3], but now we sedan&r,; > 1 the slope is smaller.

Our results for Py; > 1 are compatible with those of [7], who listed the kinetic andgmetic dissipation scaleg; =
(3 /ex)/* andly; = (n°/enr)'/?, respectively, for their decaying and forced hydromagnsitinulations at different
values of Px;. Computing the dissipation ratio from their Table lea§/en, = Pri,(£x/¢a) %, we find that their data
for non-helical decaying turbulence are well describedtsyformulacy /ey ~ 0.6 P3;°. For non-helically forced
turbulence with0.01 < Pry, < 10, their data agree perfectly with our fifc /ep; ~ 0.4 Pr}f’ (red filled symbols in
Figure 2). In their case, Regincreases with Ry, but its value is generally much larger than our values fgf Rr 1. This
suggests that the/3 scaling occurs for large enough magnetic Reynolds numbetdheat our steeper fit for pr < 1
and the mismatch at r = 1 is a consequence of small values ofyRe



We emphasize that in view of Figure 1, the fraction of energf t

is being diverted to magnetic energy through dynamo actin d s
pends on the term-(u - (J x B)), and that this must be equal i S’;/f”f(m P
to €7 in the statistically steady state. This fraction is therefo I
en /e and we may call it the efficiency of the dynamo. Remark-
ably, Figure 2 shows that there is ayPdependence of the dy- 1.0

namo efficiency both with and without helicity. The presente f e @r@ @ EP
helicity in the forcing function can lead to magnetic fielthgea- & % /3 ]
tion at the largest scale of the system. It is therefore alferred < F Cr/En=04 Pri” |

to as a large-scale dynamo. Non-helical forcing leads to-mag
netic fields on scales that are typically somewhat smalkar the
energy-carrying scale of the turbulent motions.
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We can produce a stationary state where the ram pressure of {fi"€ 2 Dependence of the dissipation ratig /cu on
flow from the left ¢ — —oc) can be balanced by the magneti rys for large-scale dynamos (solid blue line) and small-
pressure of a magnetic kink whén— ug for  — +oo and scale dynamos (dashed orange and red lines). The red filled
b — 0 for z — —oo. The resulting scaling in Figure 3 Confirms%ymbols and black plus signs correspond to the results of [7]
Equation (1) withy ~ 0.55 for Pry; > 1 andg & 0.95 for Pry; < for forced and decaying turbulence, respectively, referred to
1 ’ M ' M as SPP11 in the legend.

Here we find scalings that are broadly similar to those for tur

bulent large-scale dynamos as well as small-scale dynaoros f  100f™
Pry; < 1, namely a slope betwedn6 and0.7. For Pr; = 1, the 10; ]
profiles ofb(x) andwu(x) are similar and resemble thenh x/w e~ 055
profile ofu in the passive scalar case. However, forboth R 1 = 1 L P ' E
and>> 1, the profiles ob(z) andu(z) become asymmetric, which ~ b ]
is also the reason why we chose to integrate in a domain where %' ¢ slope = 0.95 3
—x_ > x4. For small values of Ry, i.e., wheny > v, the 001k ]
magnetic field begins to ramp up slowly and quite far away from ]
x = 0. This leads to a corresponding declineudf:). On the 0.001 L ‘ ‘ ‘ ‘ : ‘
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other hand, for large values of Rr the value ofv (> n) is so
large t_hatacertair) imbalancef + b* — uZ implies only a small Figure 3. Magnetic Prandtl number dependence in the
slope inu(z), so|u’| must be small. MHD model.

In the present work, he have extended earlier findings of;a Pr

dependence of the kinetic-to-magnetic energy dissipatitio, ex /e),, to the regime of small-scale and large-scale
dynamos for Py; > 1 and at higher resolution than what was previously poss#jlelf most cases, our results confirm
earlier results that for large-scale dynamos, the ratige ), is proportionate to By’. Furthermore, we have shown that a
similar scaling with Py, can be obtained for a simple one-dimensional Alfvén kinkemetram pressure locally balances
magnetic pressure. Interestingly, in these cases kinetigg dissipation is accomplished mainly by the irrotadigoart

of the flow rather than the solenoidal part as in the turbidesimulations presented here. We note in this connectidn tha
the kinetic energy dissipation, which is proportiona®8%) = ((V x u)?) + (3(V - w)?), has similar contributions
from vortical and irrotational parts.
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