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Abstract We present a systematic numerical investigation of high-resolution 3D isotropic and homogeneous turbulence resolved on

a decimated set of Fourier modes. Fractal decimation acts to decrease the effective dimensionality of the flow by allowing triadic

interactions only in a set of Fourier modes N(k) proportional to kDF for large k. While keeping the symmetries of the original 3D

Navier-Stokes equations unchanged, a dramatic change in small-scale statistics is detected at decreasing the fractal dimension DF .

Already at fractal dimension DF = 2.8, a global self-similar behaviour is observed in the inertial range of scales, the consequence of

such transition are the restoration of the scaling symmetry and vorticity distribution that becomes close to Gaussian.

We relate the results to the different roles of local vs non-local interactions in the energy transfer range.

FROM SCALING-INVARIANCE SYMMETRY BREAKING TO RESTORATION

The understanding of turbulence has considerably advanced in recent years. From the observations collected by means of

experiments and direct numerical simulations, we have progressed to the first analytical description of anomalous scaling

laws in the problem of turbulent transport [1]. A similar understanding still lacks for the 3D Navier-Stokes equations,

despite the tremendous collection of attempts [2, 3]. The building bricks of any theory are the concepts of energy cascade,

symmetry invariance and small-scale universality.

Recently, it has been shown that hydrodynamical turbulence can exist in non-integer space dimension DF , with the

non-linear term conserving energy and enstrophy and in the original problem [4]. Starting from DF = 2, the fractally

decimated Navier-Stokes equations exhibit a Gibbs equilibrium state with energy spectrum E(k) ∝ k−5/3 at the critical

dimension DF = 4/3 [5]: morevover the negative energy flux associated to the inverse energy cascade linearly vanishes

near the critical dimension DF = 4/3. This supports the interpretation of the inverse energy cascade in two-dimensional

turbulence as an equilibrium regime.

What happens if we consider a turbulent flow in the regime of direct energy cascade, starting from DF = 3?

 2

 3

 4

 5

 6

 7

 8

        10         100     

K
(r

)

r/η

    3
2.999
 2.99
 2.98
  2.8
  2.5

Figure 1. Log-lin plot of the flatness K(r) measured from the longitudinal velocity increments vs the scale separation, normalized by

the Kolmogorov scale. Data refer to the set of direct numerical simulation with 10243 grid points. Label refer to the simulations at

changing the fractal dimension DF .

To answer this question we performed a series of Direct Numerical Simulations of fractally decimated Navier-Stokes

equations with 10243 and 20483 grid points. The flow is stationary, statistically isotropic and homogeneous. Two kinds

of forcings were used [6], the first acting on a narrow band about the smallest wavenumber, the second acting on a larger

band of wavenumbers. Fractal decimation is realised by applying a Galerkin truncation in Fourier space and by a random

decimation of all sub-sets of wave-numbers. As a result, on average N(k) ∝ kDF modes are left in a sphere of radius k.

We explored the range with 2.5 ≤ DF ≤ 3 (see Table 1): this implies that, e.g. at resolution 20483 and fractal dimension

DF = 2.5, roughly only the 2% of the Fourier modes will be active with respect to the standard three-dimensional case.

However, in contrast with the inverse cascade regime, where the energy injection is more and more balanced by the direct

dissipation near injection, here the positive energy flux does not vanish when increasing the Fourier decimation.



b

DF N3 η/∆x ν #TE Forcing
3 10243 0.75 6.e-4 10 F1

3 10243 0.95 8.e-4 6 F1

2.999 10243 0.8 6.e− 4 10 F2

2.999 10243 0.75 6.e− 4 15 F1

2.99 10243 0.98 8.e− 4 10 F2

2.99 10243 0.8 6.e− 4 10 F2

2.99∗ 10243 0.95 6.e− 4 15 F1

2.99 20483 0.7 2.e− 4 7 F1

2.98 10243 1 8.e− 4 8 F2

2.98 10243 0.75 6.e− 4 10 F2

2.98 10243 0.75 6.e− 4 15 F1

2.98 20483 0.7 2.e− 4 8 F1

2.8 10243 0.9 6.e− 4 10 F1

2.5∗ 10243 0.65 6.e− 4 8 F1

2.5∗ 10243 0.2 1.5e− 4 8 F1

Table 1. Parameters of the numerical simulations: DF fractal dimension; grid resolution N3; Kolmogorov length scale η in simulation

units (SU) divided by grid spacing ∆x = 2π/N ; kinematic viscosity ν (SU); extension of the statistical database in terms of the

estimated number ot large-scale eddy turnover times #TE ; F1 forcing at low shells: wavenumbers forced in the range (0.5 < |k|2 < 3);

F2 forcing acts in the range: (0.5 < |k|2 < 6.25). Runs with the symbol ∗ are those repeated with two different realizations of the

random realization of the fractal Fourier decimation.

Figure 1 shows the steady-state measure of the velocity field flatness, measured from longitudinal Eulerian moments, as

a function of scale r. The consequence of Fourier decimation is dramatic: at DF = 2.99, the small scale flatness has

already become 60% smaller, at DF = 2.8 the flatness is equal to its Gaussian value at all scales. Transition to a Gaussian

statistics has already been found in turbulent flows, but in the presence of a random stirring with power-law spectrum [7],

in agreement with renormalization group predictions [8].

Finally, we find that Fractal decimation also modifies the energy spectrum slope, and the statistics of velocity gradients.

In the extreme situations when the system is Gaussian at all scales, it appears that the energy transfer becomes “diffusive-

like” with local and non-local triadic interactions playing similar roles.

The work has been done within the EU-PRACE Project Pra04 num. 806, and within the activity of the ERC AdG

NewTURB, num 339032. We thank Stefano Musacchio and Prasad Perlekar for collaborating in the first part of the

project.
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