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A superfluid in the zero temperature limit has no viscosity. Asuperfluid Fermi liquid3He-B is formed by the condensation
into the groundstate of the Cooper pairs of3He atoms. The condensate pairs behave collectively and are described by a
coherent macroscopic wavefunction. The superfluid velocity is proportional to the gradient of phase of the wavefunction,
∇θ, so that the superflow is irrotational,∇×v = 0, but can support the line defects with∇×v 6= 0. These are quantum
vortices; around each of them the phase of the wavefunction changes by2π which gives rise to the irrotational circulating
flow. Each vortex carries a single quantum of circulation,κ = πh̄/m3, wherem3 is the mass of a3He atom.
Instabilities and reconnections of quantized vortices result in the formation of the vortex tangle which exhibit complex
dynamics as each vortex line moves with the collective velocity field of all other vortices. The resulting flow is known
as quantum turbulence. The property that characterizes theintensity of quantum tubulence is the vortex line density,L
(m−2), that is the total length of vortex lines per unit volume. Inthe low temperature regime,T ≤ 300µK thermal
excitations no longer form the normal fluid component, but the few remaining excitations form a ballistic gas which has
no influence on vortex dynamics. The experimental techniquedeveloped to measure quantum turbulence in3He-B in the
zero temperature limit utilises the Andreev reflection of ballistic quasiparticle excitations from the superflow [1].
Andreev reflection arises in a Fermi superfluid as follows. The energy-momentum dispersion curveE(p) for excitations
has a minimum at the Fermi momentumpF , corresponding to the Cooper pair binding energy∆. Quasiparticle excitations
havep > pF whereas quasiholes havep < pF . On moving from one side of the minimum to the other, the excitation
group velocity reverses: quasiholes and quasiparticles with similar momenta travel in opposite directions. In the reference
frame of a superfluid the dispersion curve tilts to becomeE(p)+p · v. Quasiparticles which move into a region were the
superfluid is flowing along their momentum direction will experience a potential barrier. Quasiparticles with insufficient
energy are reflected as quasiholes which almost exactly retrace the path of the incoming quasiparticles [2].
The superflow fieldv(r, t) and the dynamics of the vortex tangle are simulated by the coupled equations

v(r, t) = −
κ

4π

∮
L

r− s

|r− s|3
× ds ,

ds

dt
= v(s, t) , (1)

where the Biot-Savart integral extends over the entire vortex configuration,L, ands = s(t) identifies a point on the vortex
line. Calculations, based on the tree-method [3], are performed in a cubic box of sizeD = 1mm using periodic boundary
conditions. We simulate the evolution of an isotropic vortex tangle driven by injections of vortex loops at alternatingfaces
of the computational cube. Injecting rings of the radius240µm with frequency22Hz, we generate the tangle with an
average line density〈L〉 = 9.7 × 107 m−2 which corresponds to the mean intervortex distanceℓ ≈ 〈L〉−1/2 = 102µm.
At large scales the energy spectrum is consistent with the Kolmogorov spectrum observed in ordinary turbulence, and for
large wavenumbers with thek−1 behavior of individual vortex lines.
We analyze the Andreev reflection of quasiparticles incident on the vortex tangle in the fixed,x-direction. The initial
positions of quasiparticles are in the(y, z)-plane. The incident flux of quasiparticles can be written as[1]

〈nvg〉
i =

∫ ∞

∆

g(E)f(E)vg(E) dE , (2)

whereg(E) is the density of states,f(E) is the Fermi distribution, andvg(E) is the group velocity of excitations. The
transmitted flux,〈nvg〉t is calculated by integral (2) in which the lower limit has been replaced by∆ + max(p · v)
calculated along the quasiparticle’s rectilinear trajectory [that is for the fixed(y, z)], where the velocityv is found from
the solution of Eqs. (1). The reflected flux is〈nvg〉r = 〈nvg〉

i − 〈nvg〉
t. The total Andreev reflection,fR(t) is the sum of

Andreev reflections,〈nvg〉r/〈nvg〉i for all positions of the(y, z)-plane.
We monitor a statistically steady state of turbulent tanglewith the time-average line density〈L〉 = 9.7 × 107 m−2, for
which we found the time-average total Andreev reflection〈fR〉 = 0.37. We calculate the spectral characteristics of
fluctuations of the total reflection,δfR(t) = fR(t)−〈fR〉 and of the line density,δL(t) = L(t)−〈L〉, and compare these
with experimental measurements of the Andreev reflection from quantum turbulence generated by a grid.
Experimental studies of the Andreev scattering were performed for quantized vortices generated by the vibrating grid,as
shown in Fig. 1. Fraction of the Andreev reflection of thermalquasiparticles was obtained directly from measurements of
the thermal damping on each of the three vibrating wires shown in Fig. 1 (see Refs. [1, 4] for details).
Figure 2 (left) compares the power spectral density (PSD) ofthe Andreev reflection obtained from simulations with
that found from the experimental data. The experimental data are shown for a fully developed tangle (grid velocity
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Figure 1. Experimental measurements of the fraction of Andreev reflection fromquantized vortices generated by the grid.
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Figure 2. Left: power spectral density (PSD) of the Andreev reflection for simulations (top) and experimental observations (middle
and bottom). Right: simulated PSD of the line density; inset: cross-correlation between Andreev reflection and the line density.

6.3mms−1), and for ballistic vortex rings (1.9mms−1). For medium frequenciesf (Hz) the simulated spectral density
exhibitsf−5/3 scaling in full agreement with experimental observations.For high frequencies the experimental data show
steeper,f−3 scaling which is absent from the numerical spectrum; this scaling corresponds to the Andreev reflection from
the flow at length scales smaller than the intervortex distance,ℓ ≈ 〈L〉−1/2 ≈ 102µm. Indeed, since at the grid velocity
6.3mms−1 the tangle propagates with the mean velocity0.3 − 0.4mms−1 [1], then using the Taylor frozen hypothesis
we find that the crossover between the two scaling regimes should be at the lengthscale 100 – 200µm.
Unlike the simulated PSD of Andreev reflection, shown in Fig.2 (right) the simulated frequency spectrum of fluctuations
of the vortex line density has a signature of the intervortexspacing atf ≈ 20Hz. However, in contrast with the simulated
PSD of Andreev reflection, this spectrum apparently conforms to the−3 power law for medium frequencies (f ≤ 20Hz).
The coincidence of the−5/3 scalings for the two simulated spectral densities at higherfrequencies is probably misleading:
for f > 20Hz the experimentally observed spectral density of Andreev reflection shows a different,f−3 scaling. The
difference in behavior of the two spectral densities seems to invalidate the earlier assumption [4] that the fluctuations of
Andreev-reflected signal can be interpreted as fluctuationsof the vortex line density. One of the reasons for this difference
might be that, unlike fluctuations of the line density, the Andreev reflection is very sensitive to the large scale flows
(caused, in particular, by the polarisation of the vortex lines [5]).
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