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Abstract Bose-Einstein condensates (BEC) are ideal superfluid systems to realize quantum turbulence (QT): vortex cores in BECs are
larger than in superfluid Helium, making easier their observation. Recent experimental and numerical studies [8] reported that vortex
states in BEC can evolve towards a turbulent regime when an oscillatory excitation is applied. We discuss in this work how to accurately
prepare initial states with vortices before running numerical simulations of QT based on the Gross-Pitaevskii equation. The case of a
dense Abrikosov lattice in a fast rotating BEC is presented. High resolution numerical simulations using parallel computing are used
to accurately capture physically important features of the vortices (vortex radius, inter-vortex spacing, vortex density profile).

INTRODUCTION

Figure 1. Example of 3D simu-
lation of an Abrikosov type vor-
tex lattice with tangled vortices
in rotating BEC.

Superfluid systems with a large number of quantized vortices tangled in space can evolve
to quantum turbulence (QT) [3, 6]. There are several practical reasons for which the
BEC is a perfect superfluid system to realize and study QT: vortex cores are larger than in
superfluid Helium (and thus more easily observable); the high controllability of the system
and its finite size (controlled by the trapping potential) make possible new scenarios for
the transition to QT. Recent experimental and theoretical studies [7, 8] reported different
possible routes to QT in BEC. One of the explored paths was the use of an oscillatory
excitation [8]: for a certain range of the amplitude of the excitation, an increasing number
of vortices was generated, and the vortex lattice finally evolved into a turbulent regime.
The present contribution is concerned with the numerical investigation of the evolution
of a dense Abrikosov vortex lattice (see figure 1) towards QT. We focus here on the gen-
eration of different initial conditions of rotating BEC with vortices. As in classical fluid
turbulence, the numerical and physical accuracy of the initial condition could be crucial
in computing properties of numerically generated QT. To accurately simulate configura-
tions with a large number of vortices, a new numerical system solving the Gross-Pitevskii
equation was designed and implemented using MPI-OpenMP parallel programming.

NUMERICAL SYSTEM

We consider a pure BEC of N atoms confined in a trapping potential V rotating with angular velocity Ω. The evolution
of the system is described by the Gross-Pitaevskii equation (GPE):

i
∂

∂t
ψ(x, t) =

(
−1

2
∇2 + V(x) + β|ψ(x, t)|2 −Ω · L

)
ψ(x, t), in D ⊂ R3, (1)

where β is the nonlinear interaction coefficient (all variables are dimensionless). The wave function ψ is normalized
to unity, i. e.

∫
D |ψ|

2 = 1. The angular momentum is defined as L = x × p, with p = −i∇ the linear momentum.
We simulate the dynamics of the BEC starting from an initial condition representing stable or meta-stable states of the
system. Such steady states are sought as solutions of the form ψ(x, t) = u(x) exp(−µt), with µ the chemical potential.
Consequently, we also have to solve the equation for u(x), obtained directly from (1) as a nonlinear eigenvalue problem,
also called the stationary GPE; we use a pseudo-time (or imaginary-time, τ ) propagation formulation:

∂

∂τ
u(x, τ) =

(
1

2
∇2 −V(x)− β|u(x, τ)|2 + Ω · L

)
u(x, τ), in D ⊂ R3. (2)

We developed a new parallel MPI-OpenMP numerical code that is able to solve both real-time (1) and imaginary-time
(2) Gross-Pitaevskii equations. For the space discretization we use either Fourier pseudo-spectral methods (with periodic
boundary conditions) or compact sixth order finite difference schemes (with periodic or homogeneous Dirichlet boundary
conditions). Different time integration schemes are used for the two equations: for (1) we have the choice between Strang
splitting, Crank-Nicolson and relaxation methods (see [1] for a review); for (2) we use a semi-implicit Euler or Crank-
Nicolson scheme (see [2] for a review). The numerical code performed with very good scaling properties on parallel
supercomputers up to 16,000 cores. The highest grid resolution used in computations was 10243.



RESULTS AND DISCUSSION

One way to obtain a very dense vortex lattice in a BEC is to consider a fast rotating condensate with large nonlinear inter-
action constant β. We illustrate in figure 2 the case of a condensate trapped in a hamonic+quartic potential which allows
very large rotation rates. The physical parameters correspond to experiments by [4]; some of these configurations were
simulated in [5]. We focus in this part on the validation of the computed stationary state by extracting physically relevant
properties from numerical data. Figure 2 shows very good agreement between numerical data and the theory by [9] for the
vortex radius rv (proportional to the healing length ξ) and the inter-vortex spacing bv (parameter of the hexagonal lattice).
It is also interesting to note that density profiles of vortices ρ(r) are different from classical approximations: Thomas-
Fermi (TF) ρ(r) ∼ (r/

√
2ξ2 + r2)2 and Lowest-Landau-Level (LLL) ρ(r) ∼ exp[−r2/2l2])2, l = (

√
3/2π)1/2bv . This

indicates that an initial condition with artificially planted vortices using these theories might be inaccurate for starting
numerical simulations of QT. More dense lattices (up to 300 vortices) were obtained for large values of the rotation rate
Ω and interaction constant β. In the next step of this study, steady vortex lattices (as illustrated in figure 2) will be used as
initial condition in real-time GPE (1) and submitted to external oscillatory excitation, as in [8], to explore routes to QT.
This part is currently under investigation.
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Figure 2. Numerical simulation of a fast rotating BEC with a harmonic+quartic trapping potential. Three-dimensional structure of the
Abrikosov vortex lattice (in blue) and its representation in the mid-plane (red dots). Computed characteristics of the vortex lattice and
comparison with theory: vortex radius rv , inter-vortex spacing bv (upper range); density profiles ρ(r) for two vortices (lower range).
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