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Abstract The interactions of the nearest neighbour vortices are argued to play a significant role in the crossover range of scales that
lies between the Kolmogorov-Richardson cascade and the Kelvin wave driven cascade in superfluid turbulence. In this work, we study
how a wave excitation (a Kelvin wave or a soliton) on a vortex affects a nearby straight vortex. Our numerical simulationsreveal that
coherent excitations can hop from one vortex filament to another whilst retaining their coherent properties.

INTRODUCTION

Turbulence in superfluids takes the form of a quasiclassicalKolmogorov cascade at length scales larger than the intervortex
separation. At scales less than the intervortex separation, energy transfer to decreasing length scales can be sustained by
a Kelvin wave cascade that can exist on individual vortex lines. What happens at the crossover of these two regimes is
more or less an open question. Kozik and Svistunov proposed ascenario with a chain of cascades driven by three different
mechanisms [1]. In one of these subregimes, interactions between nearest-neighbour vortex lines have an important role.
In this work, we perform numerical simulations for parallelvortices. We use the vortex filament model, where the vortices
are described as discretized space curvess(t) (t is the time) and the vortex points move according to the Biot–Savart law
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The singularity at a vortex point is removed by isolating thelocal contribution that is contained in the first term. Lengths
of the two adjacent line segments connected tos are denoted byl±. These line segments are excluded from the Biot-Savart
integral contained in the second term. Prime denotes differentiation with respect to arc length. Here we have the quantum
of circulationκ = h/m and the core diametera0. For helium-4κ = 0.0997 mm2/s anda0 ≈ 10−7 mm. Since the core
radius is several orders of magnitude smaller than any otherlength scale, it is reasonable to model superfluid vortices
as vortex filaments. Our simulations are performed with periodic boundary conditions in the direction of the vortex and
assuming zero temperature such that there is no mutual friction acting on the vortices.

KELVIN WAVES

The simplest case to study is two coaxial vortices, one straight and one with a Kelvin wave. Although this is a somewhat
unphysical situation, where the straight vortex is trappedwithin the helical vortex, the advantage in considering this setup
is that both of the vortices have the same axis of symmetry. Subsequent integration of the Eq. (1) reveals that a Kelvin
wave with the same wave number as that initially present on the perturbed vortex will grow on the initially straight vortex.
This is compensated by a decrease in the amplitude of the initially perturbed vortex until it becomes straight. The cycle
then continues resulting in a recurrence as can be seen in Fig. 1.
A similar kind of recurrence is also seen when the helical vortex is not wound around the straight vortex but is placed next
to it. The difference is that if the vortices do not have the same symmetry axis, additional modes will appear (multiples of
the initial mode). The initial distance between the vortices also affects the period of the recurrence. The phenomena can
be generalised in situations with more than two vortices. The ensuing behaviour of the vortices becomes more complex.
Our simulations show that a breather is likely to occur for a large amplitude Kelvin wave. A breather is a nonlinear wave in
which energy concentrates in a localized and oscillatory manner. In the case of a vortex filament, a breather is manifested
as a looplike excitation of the helical vortex [2]. Large amplitude excitations of this kind often result in reconnections
between adjacent vortices. Reconnections between neighbouring vortices and possible self-reconnections may lead tothe
generation of small vortex loops.
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Figure 1. The initial configuration was a helical vortex (blue) wound around a straigth vortex (red). Kelvin wave amplitude was 0.015
mm, mode 5 and length of thez-period is 1 mm. Vortex amplitudes, lengths and the phase difference as functions of time. The jump in
the phase occurs, when one of the vortices straightens. Vortex configurations att = 0 s andt = 0.015 s.

SOLITONS

An example of localized wave excitation is the Hasimoto soliton [3]. The soliton solution is
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whereµ = ν2/(ν2 + τ20 ), η = ν(s− 2τ0t) andθ = τ0s+ (ν2 − τ20 )t. The soliton is parametrized with two parameters:
τ0, torsion, andν, half of the maximum curvature. In our simulations we have typically useds ∈ [−10, 10]. We rescaled
all the coordinates so thatz ∈ [0, 1] in mm’s. While this scaling changes the actual values of the torsion and the maximum
curvature, it does not affect the ratio of the two parameters, τ0/ν, which is the key parameter in classifying the properties
of a soliton.
Whenτ0/ν ≫ 1 we observe something similar to the recurrence with a Kelvinwave. A soliton-like excitation appears
in the adjacent vortex, and the amplitudes of the excitations change periodically (see Fig. 2). The amplitudes decreasein
time, which tells us that some of the energy is dispersed. In the figure showing the vortex configuration, some additional
waves are clearly visible.
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Figure 2. Amplitudes of the vortices as functions of time and the vortex configurations att = 0 s andt = 0.006 s. The blue vortex
was initially straight and the red vortex had a soliton withτ0/ν = 10/3. Distance between the vortices was 0.005 mm and thez-period
is 1 mm.
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