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Abstract The interactions of the nearest neighbour vortices areegdrgii play a significant role in the crossover range of schlas t
lies between the Kolmogorov-Richardson cascade and thark@hve driven cascade in superfluid turbulence. In thisawae study
how a wave excitation (a Kelvin wave or a soliton) on a vortgcis a nearby straight vortex. Our numerical simulaticneal that
coherent excitations can hop from one vortex filament tolserawhilst retaining their coherent properties.

INTRODUCTION

Turbulence in superfluids takes the form of a quasiclasKiziahogorov cascade at length scales larger than the intesvo
separation. At scales less than the intervortex separaiwmrgy transfer to decreasing length scales can be sedtayn

a Kelvin wave cascade that can exist on individual vortegdinWhat happens at the crossover of these two regimes is
more or less an open question. Kozik and Svistunov proposeéreario with a chain of cascades driven by three different
mechanisms [1]. In one of these subregimes, interactiotgdes nearest-neighbour vortex lines have an importaat rol

In this work, we perform numerical simulations for paralleftices. We use the vortex filament model, where the vastice
are described as discretized space cusyes(t is the time) and the vortex points move according to the Batart law
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The singularity at a vortex point is removed by isolating liteal contribution that is contained in the first term. Lergt

of the two adjacent line segments connecteddoe denoted bis.. These line segments are excluded from the Biot-Savart
integral contained in the second term. Prime denotes difteation with respect to arc length. Here we have the quantu
of circulations = h/m and the core diamete. For helium-4« = 0.0997 mm?/s anday ~ 10~7 mm. Since the core
radius is several orders of magnitude smaller than any déimgth scale, it is reasonable to model superfluid vortices
as vortex filaments. Our simulations are performed withquici boundary conditions in the direction of the vortex and
assuming zero temperature such that there is no mutuabfriatting on the vortices.

KELVIN WAVES

The simplest case to study is two coaxial vortices, onegditaind one with a Kelvin wave. Although this is a somewhat
unphysical situation, where the straight vortex is trappidin the helical vortex, the advantage in considering #&tup

is that both of the vortices have the same axis of symmetrps&guent integration of the Eq. (1) reveals that a Kelvin
wave with the same wave number as that initially present empénturbed vortex will grow on the initially straight voxte
This is compensated by a decrease in the amplitude of thallyiperturbed vortex until it becomes straight. The cycle
then continues resulting in a recurrence as can be seen.id Fig

A similar kind of recurrence is also seen when the helicatesois not wound around the straight vortex but is placed next
to it. The difference is that if the vortices do not have thmeaymmetry axis, additional modes will appear (multiples o
the initial mode). The initial distance between the vorieéso affects the period of the recurrence. The phenomena ca
be generalised in situations with more than two vortices @hsuing behaviour of the vortices becomes more complex.
Our simulations show that a breather is likely to occur fargé amplitude Kelvin wave. A breather is a nonlinear wave in
which energy concentrates in a localized and oscillatorgmea In the case of a vortex filament, a breather is mandeste
as a looplike excitation of the helical vortex [2]. Large ditygle excitations of this kind often result in reconnento
between adjacent vortices. Reconnections between naighlgosortices and possible self-reconnections may ledkleo
generation of small vortex loops.
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Figure 1. The initial configuration was a helical vortex (blue) woundund a straigth vortex (red). Kelvin wave amplitude wasl8.0
mm, mode 5 and length of theperiod is 1 mm. Vortex amplitudes, lengths and the phaderdifice as functions of time. The jump in
the phase occurs, when one of the vortices straightenseyoadnfigurations at = 0 s andt = 0.015 s.

SOLITONS

An example of localized wave excitation is the Hasimototsal{3]. The soliton solution is
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whereu = v2/(v? +72), 1 = v(s — 279t) andd = 7ys + (2 — 72)t. The soliton is parametrized with two parameters:
70, torsion, and, half of the maximum curvature. In our simulations we haygdglly useds € [—10, 10]. We rescaled

all the coordinates so thate [0, 1] in mm’s. While this scaling changes the actual values ofth&idn and the maximum
curvature, it does not affect the ratio of the two parametgys/, which is the key parameter in classifying the properties
of a soliton.

Whenr,/v > 1 we observe something similar to the recurrence with a Kekame. A soliton-like excitation appears
in the adjacent vortex, and the amplitudes of the excitat@range periodically (see Fig. 2). The amplitudes decriease

time, which tells us that some of the energy is dispersechérfigure showing the vortex configuration, some additional
waves are clearly visible.
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Figure 2. Amplitudes of the vortices as functions of time and the vodenfigurations at = 0 s andt = 0.006 s. The blue vortex

was initially straight and the red vortex had a soliton wigliz = 10/3. Distance between the vortices was 0.005 mm and-tperiod
is1 mm.
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