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Abstract We report on measurements of the mean-flow Reynolds number ReU and the rms fluctuation Reynolds number ReV in
turbulent Rayleigh-Bénard convection as a function of the Rayleigh number Ra for 4 × 1011 <∼ Ra <∼ 2 × 1014 and Pr ' 0.8.
Both can be described by the same power law with an effective exponent ζ = 0.44, in agreement with predictions for ReU but in
disagreement with predictions for ReV .
We report results of Reynolds-number measurements, based on multi-point temperature correlation-function measure-
ments and the elliptic approximation of He and Zhang [5, 7], for turbulent Rayleigh-Bénard convection (RBC) over the
Rayleigh-number range 4× 1011 <∼ Ra <∼ 2× 1014 and for a Prandtl number Pr ' 0.8. The sample was a right-circular
cylinder with the diameter D and the height L both equal to 112 cm. The Reynolds numbers ReU and ReV were ob-
tained from the mean-flow velocity U and the root-mean-square fluctuation velocity V respectively. Both were measured
approximately at the mid-height of the sample and near (but not too near) the side wall close to a maximum of ReU . The
main contribution to ReU came from a large-scale circulation in the form of a single convection roll with the preferred
azimuthal orientation of its down flow nearly coinciding with the location of the measurement probes.
First we measured time sequences of ReU (t) and ReV (t) from short (10 s) segments which moved along much longer
sequences of many hours. The corresponding probability distributions of ReU (t) and ReV (t) had single peaks and thus
did not reveal significant flow reversals.
The two averaged Reynolds numbers determined from the entire data sequences were of comparable size and are shown
in Fig. 1. For 2× 1012 <∼ Ra < Ra∗1 ' 2× 1013 both ReU and ReV could be described by a power-law dependence on
Ra with an exponent ζ close to 0.44. This exponent is consistent with several other measurements for the classical RBC
state at smaller Ra and larger Pr and with the Grossmann-Lohse (GL) prediction for ReU [2] (dashed line in Fig. 1) , but
disagrees with the GL prediction ζ ' 0.33 for ReV [3] (solid line in Fig. 1). For Ra <∼ 2 × 1012 the data for ReU fell
below the power-law fit at larger Ra; the reason for this is not clear.
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Figure 1. ReU (open circles) and ReV (solid red circles) as a function of Ra on logarithmic scales. The dashed line is the GL
prediction for ReU , with the pre-factor adjusted to fit the data. The solid line is the GL prediction for ReV , with the pre-factor adjusted
to fit the data nearRa = 1013. The vertical dotted lines indicate our estimates of the locations ofRa∗1 ' 2×1013 andRa∗2 ' 7×1013

(see Fig. 2 below).

In the bottom of Fig. 2 we show the reduced fluctuation Reynolds number (ReV /Pr
αGL)/Re1/2 as a function of Ra.

Here αGL = −0.67 is the exponent for the Pr dependence of ReU predicted by GL. The term PrαGL changes only very
little with Ra since Pr is nearly constant. On this high-resolution graph one sees that at Ra = Ra∗2 ' 7 × 1013 the
dependence of ReV on Ra changed. For larger Ra ReV ∼ Ra0.50±0.02, consistent with the prediction ζ = 1/2 for ReU



Figure 2. Top: The reduced Nusselt number Nu/Ra0.321 and bottom: The reduced fluctuation Reynolds number
(ReV /Pr

αGL)/Re1/2, both as a function of Ra on a logarithmic scale. The vertical dashed and dotted lines represent our best
estimate of the location of Ra∗1 and Ra∗2 respectively.

[4] in the ultimate state of RBC.
In the top of Fig. 2 we show recent measurements of Nu, also in a reduced form Nu/Ra0.321, as a function of Ra. Also
these measurements indicate that Ra∗2 ' 7× 1013. We note that this value is much lower than the result Ra∗2 ' 5× 1014

found for a sample with Γ = 0.50 [6, 1].
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