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ANGULAR STATISTICS OF LAGRANGIAN TRAJECTORIES
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Abstract The angle between subsequent particle displacement increments is evaluated as a function of the timelag in isotropic tur-
bulence. It is shown that the evolution of the average of this angle contains two well-defined power-laws, reflecting the multi-scale
dynamics of high-Reynolds number turbulence.

INTRODUCTION

In the Lagrangian reference frame, the spatio-temporal complexity of turbulence manifests itself through the spiraling
chaotic motion of fluid particles, changing direction at every timescale. This directional change of Lagrangian tracers,
as a function of the timelag between two observations, is the subject of the present work. Instantaneous measures of the
curvature in turbulence have been investigated in the past five years for academic turbulent flows, both in three [2, 8] and
in two space dimensions [6, 4]. The coarse grained curvature over a time interval was only recently introduced by Burov
et al. [3]. More precisely, in this last work the directional change of a particle was introduced, and the characteristics of
this new measure were investigated in various types of random walks. In the present work, we will show how this measure
can characterize the time-correlation of the direction of a fluid particle in a turbulent flow. In particular will we show how
the multi-scale character of a turbulent flow can be revealed by considering the timelag dependence of the directional
change.

TIME-EVOLUTION OF THE COARSE-GRAINED ANGLE

We define the Lagrangian spatial increment as

δX(x0, t, τ) = X(x0, t)−X(x0, t− τ) (1)

where X(x0, t) is the position of a fluid particle at time t, passing through point x0 at the reference time t = t0 and
advected by a velocity field u, i.e. dX/dt = u . The cosine of the angle Θ(t, τ) between subsequent particle increments,
introduced in [3], is

cos(Θ(t, τ)) =
δX(x0, t, τ) · δX(x0, t+ τ, τ)

|δX(x0, t, τ)| |δX(x0, t+ τ, τ)|
. (2)

The angle is illustrated in Figure 1 (left). Rather than considering its instantaneous evolution, its averaged absolute value
is of particular interest in an isotropic random velocity field. The ensemble average will be denoted in the following by

θ(τ) ≡ 〈|Θ(t, τ)|〉 . (3)

For short time lags, θ(τ) should be close to zero, whereas for times long compared to the correlation time associated with
the spiraling motion θ(τ) should tend to π/2 by symmetry.
For short times the instantaneous angle Θ(τ, t) is related to the curvature κ (see Figure 1 (left)) by the relation

κ(t) = lim
τ→0

|Θ(t, τ)|
2τ‖u(t)‖

, (4)

with u being the velocity. How the angle varies in between the short and long-time limits is the main subject of the present
work and we will show that the dependence of θ(τ) on the timelag contains the signature of the multi-scale dynamics of
a turbulent flow.
The database used to investigate the behaviour of θ(τ) is described in [5, 7]. The simulation was carried out using standard
pseudo-spectral techniques, following 8.106 fluid particles in a statistically stationary isotropic turbulent flow during 5.8
integral timescales in a periodic cube of dimension 2π. The resolution is 10243 gridpoints. The integral timescale is 2.1
and the Kolmogorov timescale τK = (ν/ε)1/2 = 0.036, where ε = 0.31 is the mean dissipation rate and ν = 4.10−4 the
kinematic viscosity. The Lagrangian integral timescale is of the order of the Eulerian integral timescale. The Taylor-scale
Reynolds number is Rλ = 225.
Figure 1 (right) shows θ(τ) in double-logarithmic representation. The angle increases monotonuously from zero to π/2,
and this latter value is approached for values of τ of the order of the Lagrangian integral timescale. Two power-laws can
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Figure 1. Left: definition of the angle between subsequent Lagrangian particle increments. Right: the average angle θ as a function of
the timelag τ normalized by the Kolmogorov time-scale τK . In the inset the compensated angle, θ̃(τ) ≡ θ(τ)σu/(ετ)

1/2 is plotted..

be identified in this graph, with a cross-over around twice the Kolmogorov timescale. The origin of these power-laws is
elucidated in the full paper [1].
It is derived that, within the framework of Kolmogorov’s 1941 inertial range theory, the scaling should be given for τ
small with respect to the smallest Lagrangian time-scale, the Kolmogorov scale, by

θ(τ) ≈ 2τ
σa

σu
for τ � τK . (5)

where σa and σu are the total rms perpendicular acceleration and velocity, respectively. The linear relation between θ(τ)
and τ is well observed in Figure 1 (right).
At timescales larger than τK , but smaller than T , i.e., in the inertial interval, we obtain, assuming dimensional scaling for
the perpendicular acceleration, that

θ(τ) ∼ τ1/2
ε1/2

σu
∼

( τ

T

)1/2

for τK � τ � T. (6)

Again, this scaling is observable in Figure 1 (right), even though the power-law is less well present than in the dissipation
range. This is better appreciated by considering the compensated angle, θ̃(τ) ≡ θ(τ)σu/(ετ)

1/2, plotted in the inset of
the figure.
In the full paper [1] it is shown that the probability density function of the directional change is close to self-similar
and well approximated by an analytically derived model assuming Gaussianity and independence of the velocity and the
Lagrangian acceleration.
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