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Abstract Spatial structures of energy transfers in both the real and Fourier spaces are investigated by simulating the Föppl-vonKármán
(FvK) equation. Distinctive structures of the stretching-energy field, which is the bundle of ridges in the real space and the line segment
at small wavenumbers in the Fourier space, appear in the active phases of turbulent state.

INTRODUCTION AND FORMULATION

Elastic wave turbulence has been studied experimentally, numerically and theoretically, and exhibited rich phenomena
such as spectral variation [1]. The coexistence of weakly and strongly nonlinear spectra is one of the most remarkable
properties. In [2], energy decomposition analysis and energy budget are investigated by using a single-wavenumber
representation of nonlinear energy spectrum. We also have found the strong correlation between a modeak and its
companion modea−k at the small wavenumbersk, where the nonlinearity is relatively strong. Although onemay expect
a distinctive structure in the real space due to this correlation, the real-space structures are the results from the cumulative
effect of all active modes. At the 3rd IC-MSQUARE 2014 [3], onthe other hand, we have reported that the bundle
structures of ridges appear intermittently in the time evolution of the stretching-energy field. The time evolution of
nonlinearity shows the existence of active and moderate phases in the turbulent state. The bundle structures appear at such
active phases with the strong nonlinearity, when the energytransfers occur effectively at the scales of strongly nonlinear
spectrum. We attempt to characterize this driving structure of energy transfer in both the real and Fourier spaces.
The governing equation for the lateral displacementζ and the momentump in a thin elastic plate is the FvK equation,
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whereχ is the Airy stress potential. The Laplace operator and the Monge–Ampère operator are expressed as∆ and
{f, g} = ∂xxf∂yyg+∂yyf∂xxg−2∂xyf∂xyg, respectively. The Young’s modulusY , the Poisson ratioσ, and the density
ρ are the physical properties of the plate. The thickness of the plate is expressed byh. The complex amplitudeak is
used as the elementary wave of the wavenumberk in weak turbulence theory (WTT). The Fourier coefficients ofthe
displacementζk, of the momentumpk, and of the Airy stress potentialχk, respectively are given as
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whereωk =
√

Y h2/12(1− σ)2ρ k2, anda∗ represents the complex conjugate ofa. Equation (1) is reduced to a single
equation forak, which was solved numerically by using the standard pseudo-spectral method.
The energy decomposition is convenient to investigate the energy budget in detail. [2] The decomposed energies are the
kinetic energyK, the bending energyVb and the stretching energyVs:
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Adoption of ζk, pk andχk as elementary waves enable the single-wavenumber representations of these decomposed
energies under the periodic boundary condition:Kk = |pk|2/2ρ, Vbk = ρω2

k
|ζk|2/2, Vsk = k4|χk|2/2Y. We here

categorize the former two energies (latter one energy) linear (nonlinear) energy, since their (its) order of the complex
amplitudes is quadratic (quartic). It may be worth to note here that adoption of the complex amplitudes as elementary
waves makes the nonlinear energy,Vsk, the convolution representation as known in WTT.

RESULTS AND CONCLUSION

Time evolution of nonlinearity, which is estimated by the ratio of the quartic to quadratic order of the complex amplitude
in Hamiltonian, shows the existence of active and moderate phases in the turbulent state, as shown in Fig. 1 (a). The
strong nonlinearity appears intermittently, while the nonlinearity fluctuates randomly with relatively small amplitudes
mostly. To find the typical structures of nonlinearity in thereal space, we have drawn several kinds of fields, such as
ζ(x), p(x), K(x), Vb(x), andVs(x). The fieldζ(x) has relatively large-scale structures, while the other fields have very
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Figure 1. (a) Time evolution of nonlinearity. Representative snapshot ofVs(x) in (b) moderate and (c) active phases. (d) Representative
energy fluxes in active (red) and moderate (blue) phases and their average (green).
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Figure 2. Snapshot of the logarithmic amplitude scales ofk2χk in (a) moderate and (b) active phases. Snapshot of the logarithmic
amplitude scales ofak in (c) moderate and (d) active phases. The scale markings of the axes are expressed in2π unit.

fine non-uniform distribution that consists of point-like structures. Only the stretching-energy fieldVs(x) shows the clear
difference of structures between active and moderate phases.
In Figs. 1 (b) and (c) shown are the snapshots ofVs(x) at moderate and active phases in the turbulent state, respectively.
The bundle structures of the ridges of stretching energy areobserved in the latter figure. We also examined the fluxes of
the total energy in each phases, since they reflect the nonlinear interaction among modes. Note that the fluxes are different
from those of linear energy conventionally used in WTT. Although the averaged energy flux, green curve in Fig. 1 (d),
is almost constant in the inertial range, each representative flux deviates from the average value significantly (slightly) in
low (high) wavenumber region where the strongly (weakly) nonlinear spectrum is observed. The results Figs. 1 suggest
the bundle structures found in the real space drive energy transfer.
Figures. 2 (a) and (b) respectively show the corresponding snapshot ofk2χk in the Fourier space. We can clearly see the
X-structure ofk2χk, whose direction is perpendicular to that of the real-spacestructures, at small wavenumbers in the
latter figure, which is the natural consequence of the duality between the real and Fourier spaces. Since we can reproduce

the bundle structures by retaining only the mode within the rangek =
√

k2
x
+ k2

y
≤ 5 × 2π, the nonlinear interaction

among the modes might be conducted by these small number of modes. Sinceχk consists ofak, one may expect the
difference of structures inak between active and moderate phases in the turbulent state. Figures. 2 (c) and (d) respectively
show the corresponding snapshot ofak in the Fourier space. It should be noted here thatak is not the Hermitian function
of k in contrast withζk, pk, andχk. Little difference can be seen there. We also examinedζk andpk, though the graphs
are omitted here. No clear structures can be seen there. While little difference appears inak as well asζk andpk, clear
difference appearsχk which is a kind of the convolution ofak.
In [4], we report the importance ofχk at small wavenumbers in the nonlocal interactions of the kinetic-energy transfer. It
means that the bundle structure observed in the real space homologizes this interaction among the Fourier modes [3]. The
mechanism how the functional form ofχk extracts the nonlinear effects from the complex amplitudeak will be discussed.
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