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Abstract Spatial structures of energy transfers in both the real andi€r spaces are investigated by simulating the Fopplkiéoman
(FvK) equation. Distinctive structures of the stretchamergy field, which is the bundle of ridges in the real spacktha line segment
at small wavenumbers in the Fourier space, appear in theegatieses of turbulent state.

INTRODUCTION AND FORMULATION

Elastic wave turbulence has been studied experimentaltpenically and theoretically, and exhibited rich phenomen
such as spectral variation [1]. The coexistence of weaktl/sirongly nonlinear spectra is one of the most remarkable
properties. In [2], energy decomposition analysis and ggneudget are investigated by using a single-wavenumber
representation of nonlinear energy spectrum. We also hawedfthe strong correlation between a mageand its
companion mode_;, at the small wavenumbeks where the nonlinearity is relatively strong. Although anay expect

a distinctive structure in the real space due to this caicglathe real-space structures are the results from theutaiive
effect of all active modes. At the 3rd IC-MSQUARE 2014 [3], the other hand, we have reported that the bundle
structures of ridges appear intermittently in the time etioh of the stretching-energy field. The time evolution of
nonlinearity shows the existence of active and moderategshia the turbulent state. The bundle structures appeagchat s
active phases with the strong nonlinearity, when the entegsfers occur effectively at the scales of strongly nedr
spectrum. We attempt to characterize this driving striectdrenergy transfer in both the real and Fourier spaces.

The governing equation for the lateral displacenieahd the momentum in a thin elastic plate is the FvK equation,
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wherey is the Airy stress potential. The Laplace operator and thedée-Ampére operator are expressed\aand
{f, 9} = Oz fOyyg+ Oyy fOrsg — 204y f Ouyg, respectively. The Young’s modulds the Poisson ratie, and the density
p are the physical properties of the plate. The thickness @fthte is expressed by, The complex amplitudey, is
used as the elementary wave of the wavenuntber weak turbulence theory (WTT). The Fourier coefficientstod
displacemeng;,, of the momentunpg, and of the Airy stress potentigk, respectively are given as
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wherew, = \/Yh2/12(1 — 0)2p k2, anda* represents the complex conjugaterofEquation (1) is reduced to a single
equation forag, which was solved numerically by using the standard psexysmtral method.

The energy decomposition is convenient to investigate tieegy budget in detail. [2] The decomposed energies are the
kinetic energyK, the bending energy;, and the stretching energdy:
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Adoption of {x, pr and xx as elementary waves enable the single-wavenumber repaéees of these decomposed
energies under the periodic boundary conditiéis = [pr|?/2p, Ve = pwilCel®/2, Ve = k*|xx|?/2Y. We here
categorize the former two energies (latter one energyaglifeonlinear) energy, since their (its) order of the comple
amplitudes is quadratic (quartic). It may be worth to noteehtbat adoption of the complex amplitudes as elementary
waves makes the nonlinear enerljy,, the convolution representation as known in WTT.

RESULTS AND CONCLUSION

Time evolution of nonlinearity, which is estimated by th&oaf the quartic to quadratic order of the complex ampléud

in Hamiltonian, shows the existence of active and moderhasses in the turbulent state, as shown in Fig. 1 (a). The
strong nonlinearity appears intermittently, while the Inoearity fluctuates randomly with relatively small ampties
mostly. To find the typical structures of nonlinearity in tteal space, we have drawn several kinds of fields, such as
((x), p(x), K(x), Vo (x), andVi(x). The field{(x) has relatively large-scale structures, while the othedsiblave very
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Figurel. (a) Time evolution of nonlinearity. Representative snapshiV;(x) in (b) moderate and (c) active phases. (d) Representative
energy fluxes in active (red) and moderate (blue) phaseshairtverage (green).
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Figure 2. Snapshot of the logarithmic amplitude scales:dfs, in (a) moderate and (b) active phases. Snapshot of the fogaci
amplitude scales afy, in (c) moderate and (d) active phases. The scale markindge@btes are expressedn unit.

fine non-uniform distribution that consists of point-likeuctures. Only the stretching-energy fiéld{ ) shows the clear
difference of structures between active and moderate phase

In Figs. 1 (b) and (c) shown are the snapshotB.¢&) at moderate and active phases in the turbulent state, tesggc

The bundle structures of the ridges of stretching energypbserved in the latter figure. We also examined the fluxes of
the total energy in each phases, since they reflect the mamlinteraction among modes. Note that the fluxes are differe
from those of linear energy conventionally used in WTT. Alllgh the averaged energy flux, green curve in Fig. 1 (d),
is almost constant in the inertial range, each represeattitix deviates from the average value significantly (slighn

low (high) wavenumber region where the strongly (weaklylireear spectrum is observed. The results Figs. 1 suggest
the bundle structures found in the real space drive eneaggter.

Figures. 2 (a) and (b) respectively show the correspondingshot of2y;, in the Fourier space. We can clearly see the
X-structure ofk?y, whose direction is perpendicular to that of the real-ssiaectures, at small wavenumbers in the
latter figure, which is the natural consequence of the dulbétween the real and Fourier spaces. Since we can reproduce

the bundle structures by retaining only the mode within tuegek = | /k2 + k2 < 5 x 27, the nonlinear interaction

among the modes might be conducted by these small humber @ésndincey consists ofax,, one may expect the
difference of structures i, between active and moderate phases in the turbulent stgteeb. 2 (c) and (d) respectively
show the corresponding snapshotgfin the Fourier space. It should be noted here tha not the Hermitian function

of k in contrast with(y,, pg, andxy. Little difference can be seen there. We also examipeahdpy,, though the graphs
are omitted here. No clear structures can be seen theree\Wté difference appears i, as well ag(i, andpy, clear
difference appearsg, which is a kind of the convolution afy..

In [4], we report the importance ofi, at small wavenumbers in the nonlocal interactions of thetitrenergy transfer. It
means that the bundle structure observed in the real spacelbgizes this interaction among the Fourier modes [3]. The
mechanism how the functional form gf, extracts the nonlinear effects from the complex amplitwglevill be discussed.
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