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CHAOTIC SELF-SUSTAINING TURBULENT-LAMINAR INTERFACE IN TWO-DIMENSIONAL
CHANNEL FLOW
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Abstract Another type of self-sustainable coherent structures is found in a two-dimensional channel flow. It is embedded in a turbulent-
laminar interface, so it utilizes the inhomogeneity to keep alive. Its spatio-temporally chaotic behavior and sustaining mechanism are
investigated using the filtered simulation. This is an example of inhomogeneity induced coherent structures, which will be necessary to
understand the spatio-temporal intermittency in three-dimensional turbulent systems.

INTRODUCTION

Turbulent-laminar interfaces appear in various geometrical flows, such as boundary layers, channel flows, and even in
isotropic flows. Their dynamics have great importance in the study of turbulence, however, their highly chaotic and
fragile nature prevents us from identifying and analysing them in three-dimensional flows. We consider a two-dimensional
channel flow, which has a chaotic but less active interface structure than three-dimensional one. It should be noted that we
here use the term “turbulence” for the spatio-temporally modulated finite amplitude TS-wave state, although it is much
less active than three-dimensional turbulence. This turbulent state creates an interface between the laminar state, and the
interface invades the laminar state with a constant speed cI . This invading process is spatio-temporally chaotic, and this
localized chaotic behavior is the subject of this study. We will show below that this chaotic interface is self-sustainable,
and their spatial structure is definitely different from the classical sweep-ejection cycle. In this sense, we should not call
this buffer structure “interface”, but we use this term for consistency. The vortex structure of the interface looks alike that
of turbulent spots in three-dimensional channel flows, and thus the mechanism dominating the chaotic interface may also
be useful for understanding the dynamics of three-dimensional interfaces.

METHOD : DAMPING FILTER IN MOVING FRAME

We consider the incompressible Navier-Stokes equation in a moving frame where the interface does not move:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u−AfH(x) (u−UL) , (1)

u(x,±1) = −cI x̂, (2)

H(x;σ2,Ω) =

∫
dx′N0,σ2(x− x′)χΩ(x

′). (3)

We normalize the half width of channel 1, and impose a periodic boundary condition in x-direction u(x+L, y) = u(x, y),
L = 20π. The Raynolds number Re is set to 8000. The last term is the damping filter term [1], and we choose the filtered
region Ω = [0, 1.4]× [−1, 1], where the turbulent state is artificially damped into the laminar state UL = (1− y2 − cI)x̂.
Since the turbulent state invades the laminar state, the interface cannot be maintained without this spatially selective
damping term. Using this setting, we can simulate the chaotic interface permanently. A snapshot is displayed in fig. 1
using the turbulent vorticity ζ = (∇× (u−UL))z

Figure 1. A snapshot of the simulation. The chaotic interface is placed around 20 < x < 32. More detail definition has done by the
statistiacal analysis (fig. 2).
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Figure 2. A snapshot (left) and time-averaged (right) values of the local energy balance equation. Jν is omitted because it is very small.

RESULTS : LOCAL ENERGY BALANCE

To focus on the inhomogeneity in x-direction, we consider the y-averaged energy balance equation:

∂E

∂t
+ ∂x(Ju + Jν) = Pp + Pν −Dν + F. (4)

Since the walls move, there is an energy injection due to the viscocity Pν(x, t) = −cI (∂yux|y=1 − ∂yux|y=−1) /Re
in addition to the bulk viscous dissipation Dν . The flux due to the viscosity Jν is neglected because it is very small.
F (x, t) = −AfH(x)

∫ 1

−1
dyu · (u−U0) is an energy damping by the filter term. A snapshot and time-averaged values

of these terms are displayed in fig. 2. The pressure power Pp(x, t) = −
∫ 1

−1
dy (u · ∇) p and the gradient of the energy

flux ∂xJu are dominant in this equation. The time-averaged profiles help us to define the following three regions:

• tail region (x . 20)

• peak region (20 . x . 28)

• head region (28 . x . 35)

The head region generates energy, and most of it is consumed in the peak region. A small amount of residual energy leaks
into the tail region. In this sense, the peak and head regions construct a self-sustaining coherent structure, we call “chaotic
interface”. We can see a definitely different structure on this region in fig. 1. On the head region, there is a jet without
vorticity ejections at the walls. The peak region, on the other hand, has a role to construct the jet from the vorticity
ejection, whose seed is generated by the jet on the head region. This ejection-jet cycle is the self-sustaining mechanism
of the chaotic interface, and definitely different from the classical sweep-ejection cycle.

DISCUSSION: LOCAL SELF-SUSTAINABILITY
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Figure 3. A snapshot of the filtered simulation. It corre-
sponds to the left of fig. 2. These have almost same spatial
structure and invading speed cI .

The above descriptions of the ejection-jet cycle indicate that the
existence of the downstream turbulent state is not necessary for
this cycle. We try to confirm this conjecture using the damping
filter. We now set Ω = [0, 22] × [−1, 1] to damp the whole
tail region, and use an snapshot of the previous simulation as
an initial value. Then the chaotic interface keeps alive, and its
spatial structure and invading speed cI are hardly changed. Al-
though we have to treat the effect of the damping filter more
carefully, this result supports the conjecture about the local self-
sustainability of the chaotic interface.
We will report a more precise comparison on the presentation.
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