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Abstract Taylor-Couette flow with two independently counter-rotating cylinders is investigated. Direct numerical simulation is 
applied to study flow structure and angular velocity transport for  η = 0.714  at optimum and fully turbulent regime. The main 
purpose is to study the coherent structure in both axial and radial directions and its contribution to angular velocity transport in 
optimum condition. Visualizing the vortical structure (and other structural parameters) with the distribution of azimuthal velocity and 
ω-Nusselt number leads to a better understanding of turbulent flow structure at optimum condition comparing to non-optimum 
condition. 
 

 
COMPUTATIONAL DETAILS AND INITIAL RESULTS 

 
In the present work, Taylor-Couette (TC) flow is simulated between two counter-rotating cylinders.  In this system the 
fluid  flows between two independently rotating cylinders which are coaxial (figure 1a). TC flow has many similarities 
to Rayleigh-Benard flow which is a thermal flow in a fluid between two plates (a hot plate at the bottom and a cold 
plate above the fluid) [1]. Both systems have been used to study many concepts in fluid dynamics like instability, 
pattern formation and turbulence [2]. Due to the similarities to Rayleigh-Benard flow, similar relationships have been 
applied to study TC flow. The driving force of the system is defined as the Taylor number (Ta)                       
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transport for laminar and purely azimuthal flow. In the TC flow system the torque applied on cylinders is equal to the 
viscose dissipation in the fluid [3] and the relationship between the global response of the system  with  the  energy  
dissipation is                                 T: torque. The condition for  maximum energy dissipation in the system is known as 
the optimum condition.  Therefore, in  the  optimal  TC  flow,  we have  maximum         and       which corresponds to 
maximum angular velocity transport. 
Many studies have been made to figure out  the system statistical conditions and specifications in the optimum 
condition [2,4,5]. It has been shown that achieving the optimum condition strongly depends on the Taylor number, the 

radius ratio orir / and the Rossby number )2/()( doiroiRo   [4]. However; increasing Ta, Roopt saturates to a 

specific value for every radius ratio. Increasing Ta (consequently Res) also leads to the transition to fully turbulent 
(ultimate) regime where both boundary layers adjacent to the cylinders and bulk of the fluid are turbulent [6,7]. Prior to 
the ultimate regime, the angular velocity transport is mainly supported by large scale Taylor vortices in the bulk of the 
fluid which are confined by a mixture of both laminar and turbulent boundary layers [6]. However; Taylor rolls in the 
bulk cause an axial pressure gradient too which in turn affects the boundary layers and the rolls. Increasing the driving 
force sufficiently, axial pressure gradient and consequently Taylor rolls vanish and both the boundary layers and the 
bulk become turbulent [8]. Reaching the fully turbulent regime depends on the radius ratio and boundary conditions 
(angular velocities of the cylinders). Depending on the radius ratio and the Rossby number, remnants of Taylor rolls are 
still visible in the ultimate regime [8]. Thus more investigation is needed to study flow structures especially in fully 
turbulent regime. 
In this work, we are going to study turbulent structures between two counter-rotating cylinders with the radius 
ratio 714.0  at the optimum condition and fully turbulent regime using the dataset obtained by direct numerical 
simulation. The flow is simulated by solving the Navier-Stokes equation in a rotating frame. The rotating frame rotates 

with the angular velocity ωo so the boundary conditions are 0oθ,u and )(
oii

riθ,u   . The fully implicit 

decoupling method is applied for solving the governing equations [9] and periodic boundary conditions are applied in 
the x and θ directions so the end effects present in experiments are not present in the simulation. 
Turbulent structures in both radial and axial directions are studied to investigate its contribution to the angular velocity 
transport at the optimum condition. Studying the attached/detached eddies and vortical structures between cylinders 
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would be helpful to understand and visualize the remnants of Taylor rolls in the bulk and the interaction of bulk and 
boundary layers. The turbulent boundary layers structures will also be analyzed in the fully turbulent optimum 
condition. Along with the distribution of Nuω and azimuthal velocity some statistical results will also be studied to 
understand the flow structure better (like quadrant analysis and log layer structure in boundary layers and two point 
correlation of velocities for different points in both radial and axial condition).  
Figure 1b shows the instantaneous velocity field with contours of the retro/prograde vortices for the 1/6th of the same 
geometry at lower Taylor number (T = 2.39x107) and Ropt = -0.12 (flooded contours show 30% of the maximum and 
minimum λci) [4,10]. As seen, there are no vortices near the inner cylinder while there is a cluster of the prograde 
vortices near the outer cylinder after a very small distance which is vacant of vortices. The results are reasonable at 
lower Ta where the flow is not fully turbulent, a large area in the gap is occupied by Taylor rolls (and no vortices) [8]. 
However; as the outer cylinder is rotating in the reverse direction there is a Rayleigh stable area near the outer cylinder 
[7] which is filled with the pograde vortices. The small vacant area near the outer cylinder is the boundary layer which 
is not fully turbulent yet. The edge of area filled with the prograde vortices falls to the neutral surface (zero azimuthal 
velocity). As the prograde spanwise vortices rotate in the same sense as the main shear[10], it can be conjectured that 
there is a strong shear between the neutral surface and the boundary layer near the outer cylinder due to the rotation of 
the outer cylinder in the reverse direction.  
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Figure 1. (a)Schematic diagram of the computational domain, (b)flooded contours of the spanwise swirling strength 
(30% of the maximum and minimum λci) in the Galilean frame, the inset shows the flow structure and the boundary 

layer near the outer cylinder, (c) the area occupied by prograde vortices in the whole domain 
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