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Abstract The directional change of a fluid particle can be measured by the angle between two subsequent particle displacement
increments. At small values of the time-increment the so-defined angle is proportional to the curvature of the trajectory. At large
values this coarse-grained curvature should be affected bythe presence of solid no-slip walls around the flow domain. Wecompare
homogeneous and confined two-dimensional turbulent flows and show that the PDF of the angle is indeed strongly modified by the
presence of walls.

INTRODUCTION

The Lagrangian point of view is in many aspects the most natural way to obtain understanding of turbulent transport and
mixing. For instance, the characterization of particle trajectories is of importance to describe and quantify the topology of
fluid motion. In previous investigations the curvature was used to characterize the particle trajectories in turbulentflows,
both in three [3, 9] and in two space dimensions [8, 6]. In a recent investigation [2] we applied a measure introduced by
Burov et al. [4] to three-dimensional turbulent flows. This measure is the directional change of a particle, by considering
the angle between subsequent particle displacement increments. Intuitively one can suspect that at long-times the curva-
ture should be affected by the presence of solid boundaries,and we investigate this comparing the timelag dependence of
the directional change in periodic and confined turbulent flows.

NUMERICAL METHOD

We consider two distinct geometries in this study: a square domain with double periodic boundary conditions and a
circular domain with no-slip boundary conditions. Incompressible turbulent flow is governed by the two-dimensional
Navier-Stokes equations written in dimensionless form

∂ω

∂t
+ u · ∇ω = ν∇2ω + Fω, (1)

where,u is the velocity,ω = ∇ × u is the vorticity andν is the kinematic viscosity. The turbulence is kept statistically
stationary by a random isotropic stirring in both flows, and alarge scale friction term in the periodic case. Those effects
are represented byFω . In the wall-bounded case no friction-term is needed to attain a stationary flow since the walls
act as a source of entrophy, allowing the flow to sufficiently dissipate the kinetic energy at large scales. The boundary
conditions are enforced using the volume penalization method [1, 7] implemented in a classical pseudo-spectral method,
fully dealiased. The particle trajectories are calculatedby interpolating the Eulerian quantities and by using a second
order Runge-Kutta scheme for time integration. The Lagrangian statistics are computed by ensemble averaging over104

trajectories. The Reynolds number based on the Taylor microscale is for both geometries of orderRλ = 700. More details
can be found in [5]. The confined flow we consider is shown in Figure 1 (left).

ANGULAR STATISTICS

We define the Lagrangian spatial increment as

δX(x0, t, τ) = X(x0, t)−X(x0, t− τ) (2)

whereX(x0, t) is the position of a fluid particle at timet, passing through pointx0 at the reference timet = t0 and
advected by a velocity fieldu, i.e.,dX/dt = u. The cosine of the angleΘ(t, τ) between subsequent particle increments,
introduced in [4], is

cos(Θ(t, τ)) =
δX(x0, t, τ) · δX(x0, t+ τ, τ)

|δX(x0, t, τ)| |δX(x0, t+ τ, τ)|
(3)

Figure 1 (right) shows the probability density functions ofthis angle. For small increments where the angle should on
average be small, we observe for both flows a peaked distribution of the angle, centered around zero. For increments large
compared to the Lagrangian correlation time of the flow, the angle should become completely randomly oriented and an
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Figure 1. Left: visualization of the vorticity in the confined two dimensional turbulent flow. Right: PDF of the directional change
compared between the two types of flow.

equi-distribution over all possible angles should be observed. This is indeed the case for the periodic flow. However, in
the presence of walls the angle is importantly affected and abump aroundθ = π is observed.
In order to understand this we have computed the angle between two connected line segments by randomly choosing
three points in a circle. Computing the PDF of this angle overa large number of realizations perfectly reproduced the
shape of the PDF in Figure 1(b) for large time-increments. This shows that the shape of the PDF for very large values of
the time-increment can be explained by purely geometrical arguments, independent of the characteristics of the turbulent
flow.
In the full talk we will further focus on the periodic case. Wewill try to analytically predict the shape of the PDFs for short
time intervals using Taylor-expansions and scaling relations for the Lagrangian acceleration. We will further quantify the
average of the absolute value of the angle as a function of thetime-lag and investigate whether classical scaling arguments
can correctly describe the phenomenology of the directional change in two-dimensional turbulence.
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