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Abstract
In Taylor-Couette flow, the radius ratio (η = ri/ro) is one of the key parameters of the system. For small η, the asymmetry of the
inner and outer boundary layer becomes more important, affecting the general flow structure and boundary layer characteristics. Using
high-resolution particle image velocimetry we measure flow profiles for a radius ratio of 0.5 and Taylor number of up to 6.2 · 109. By
measuring at varying heights, roll structures are characterized for two different rotation ratios of the inner and outer cylinder. In addi-
tion, we investigate how the turbulent bursts coming from the inner and outer cylinder affect the flow profiles. These results exemplify
how curvature affects flow in strongly turbulent Taylor-Couette Flow.

INTRODUCTION

The paradigmatic Taylor-Couette (TC) flow consists of flow between two coaxial cylinders that can independently rotate.
Dimensionless control parameters are a combined Reynolds or Taylor number of the inner and outer cylinder rotation, a
rotation ratio (a = −ωo/ωi), the ratio of the inner and outer cylinder radius (η), and the aspect ratio (Γ). In this work we
focus on the linearly unstable and turbulent regime.
The radius ratio is a key control parameter [3] in TC flow and strongly influences the transitional Taylor number for the
ultimate regime[1, 2] of TC turbulence [4, 5] and the rotation ratio for which optimal momentum transport occurs [4, 6].
Because the boundary layer thickness ratio scales as η3, a strong asymmetry between the inner and outer boundary layer
exists for small radius ratio. We aim to investigate how the strong curvature of a radius ratio of η = 0.5 affects turbulent
TC flow.

SETUP

Experiments on small radius ratio turbulent Taylor-Couette flow have been carried out in the Cottbus Taylor-Couette
facility [4, 7]. The inner and outer cylinder radii are 35 mm and 70 mm respectively, the height of the setup is 700 mm.
This gives a radius ratio of η = 0.5 and an aspect ratio of Γ = 20. The maximum rotation rates are 5 Hz for both the inner
and outer cylinder.
The end plates rotate with the outer cylinder. The top plate is transparent, making the setup ideally suited to use in
combination with particle image velocimetry (PIV). A high-resolution PIV camera (LaVision Imager sCMOS) with a
resolution of 2160 × 2160 pixels and a framerate of 50 Hz is installed above the top end plate pointing downwards. The
flow is illuminated by a horizontal light sheet from a high-powered Nd:Yag dual cavity laser (Litron). The imaging of the

Figure 1. Snapshot of the radial and azimuthal velocity fields for a = 0 and Ta = 2.1 · 108.



full width of the gap combined with a vector grid of 16 × 16 pixels with 50% overlap results in a velocity vector spacing
of 0.13 mm.
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Figure 2. Azimuthal velocity profile of the inner boundary layer in wall units for inner cylinder rotation, for several different Taylor
numbers. The figure also includes the logarithmic law of the wall from Von Kármán, the viscous sublayer u+ = y+, DNS data from
[8] and measurement data from [9] for Ta = 6.2 · 1012 at an aspect ratio of 0.716,

RESULTS

As can be seen from Figure 2, the inner boundary layer of the flow slowly approaches the Von Karman log law, although at
these Taylor numbers the log layer is not yet developed. The data show good agreement with direct numerical simulations
from [8].
In addition to varying the Taylor number for inner cylinder rotation only, we also measure flow profiles at several heights
for both a = 0 and a = 0.2. By visualizing the height dependence, it can be seen that there is no structure for a = 0, but
that there exist strong roll structures in the mean flow for slight counter-rotation (a = 0.2). This finding is corroborated
by recent work for higher radius ratio [10]. Within these rolls, either inner or outer cylinder velocity is advected, changing
the flow profiles and moving the neutral line.
From the time resolved velocity fields, we extract the advective velocity of turbulent bursts coming from either the inner
or outer cylinder and see how this quantity depends on several parameters, e.g. the position in the roll and Taylor number.
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