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MEAN FIELD MODEL FOR TURBULENCE TRANSITION IN PLANE POISEUILLE FLOW
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Abstract In the pipe flow model of Dwight Barkley [1, 2], the main idea is to model pipe flow as an excitable, bistable medium. Using
a one-dimensional FitzHugh-Nagumo-type reaction-advection-diffusion system with two variables the model captures qualitatively a
surprising number of features of the turbulence transition in pipe flow. Motivated by this success, we here describe a derivation of a set
of two 1+1-dimensional coupled differential equations for the closely related system of plane Poiseuille flow from the Navier-Stokes
equation. The model contains terms for the production of turbulent kinetic energy, its transfer between the modes and its dissipation
by viscous terms. The model shows a bifurcation to a non-trivial state and reflects some of the complex dynamics observed in direct
numerical simulations.

INTRODUCTION

The transition to turbulence in plane Couette flow, pipe flow and plane Poiseuille flow can be triggered by suitable
perturbations in a range of Reynolds numbers where the laminar profile is still stable [3]. Considerable progress has been
made through the identification of three-dimensional coherent structures [4, 5, 6, 7] that appear at flow rates below the
ones where transition can be observed and which provide a scaffold of persistent structures around which the turbulence
can form. The structures are remarkably consistent in appearance, are dominated by downstream vortices and can be
rationalized within the self-sustaining cycle [8, 9]. They are exact solutions to the Navier-Stokes equation, and found
numerically using suitably adapted and expanded Newton methods [10].
A key to the transition in these flows is the excitation and maintenance of transverse velocity components: without them,
the flow becomes invariant in the downstream direction and decays. This observation provides the basis for our model, as
well as for certain control strategies.

TOTAL ENERGY BALANCE

We start with the incompressible Navier-Stokes equation and decompose the velocity field into a base flow u0 and a
perturbation u′. For the two components of the model we take the energy content of the downstream and span wise
components. They are obtained by projecting the Navier Stokes equation for the perturbation onto the parallel u′‖ and
perpendicular u′⊥ components, to arrive at a set of two coupled equations:
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Assuming a steady state and averaging over the entire volume gives a simple balance between energy production P , the
transfer T between the modes and the dissipations in the parallel and perpendicular components,

P = T + ε‖
T = ε⊥

We can then express these terms as functions of the two variables π := 〈 u2
‖
2 〉 and σ := 〈 u2

⊥
2 〉 by parameter estimation from

DNS data on fully turbulent flows, obtained using channelflow [11]. This results in a set of equations with two unknowns
describing the nullclines π̇ = 0 (eq.(1)) and σ̇ = 0 (eq.(2)) of the system in a homogenous, steady state:
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This set of equations has as fixed points the laminar state, π = σ = 0, and, as the Reynolds number increases, two new
states created in a saddle node bifurcation at Re ≈ 1200 (see the null clines in Figure 1).



Figure 1. Bifurcation diagram for the case π 6= 0 and σ 6= 0. Shown are a linear graph mimicking the Reynolds number independent
equation (1) representing π̇ = 0 and equation (2) representing σ̇ = 0 for different Reynolds numbers. As π̇ is approaching σ̇ for
increasing Re, the nullclines intersect at Re = 1222. At this point, two new states are born in a saddle-node bifurcation, a stable,
turbulent fixed point and an unstable fixed point separating laminar and turbulent basin of attraction, here denoted as “edge state”.

In a broader context, the model is reminiscent of stochastic models studied, e.g., in [12, 13]. The relation between the two
approaches and their implications for control will be discussed as well.
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