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Abstract Results on the Reynolds number dependence of the dimeestdtal dissipation raté. are presented, obtained from
medium to high resolution direct numerical simulations @) of mechanically forced stationary homogeneous magpétodynamic
(MHD) turbulence in the absence of a mean magnetic field, sigpthatC. — const with increasing Reynolds number. Furthermore,
a model equation for the Reynolds number dependence of tendionless dissipation rafé is derived from the real-space energy
balance equation by asymptotic expansion in terms of Regnolimber of the second- and third-order correlation fonetiof the
Elsasser fielde® = u + b. At large Reynolds numbers we find that a model of the fe¥m= Ce,00 + C/R,- describes the data
well, while at lower Reynolds numbers the model needs to beneled to second order iy R, - in order to obtain a good fit to the
data, whereR, - is a generalised Reynolds number with respect to the Elstiskbz ™.
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INTRODUCTION

In the absence of a magnetic field it has been known for a lang that the total dissipation rate in forced and freely
decaying homogeneous isotropic turbulence tends to aansilue with increasing Reynolds number following a well-
known characteristic curve [1, 2]. Similar obervationsédagcently been reported in decaying magnetohydrodynamic
(MHD) turbulence [3, 4], where it was found that the temparalximum of the total dissipation in freely decaying
turbulent hydromagnetic systems tends to a constant wétleasing Reynolds number, using results from direct nweakri
simulations (DNSs). In this talk we present data from a sesieDNSs of mechanically forced MHD turbulence on up
to 10242 grid points using the standard pseudospectral method wittdé-aliasing, showing that the dimensionless
dissipation rat&”. — const with increasing Reynolds number. Furthermore, we propasedel for the large Reynolds
number behaviour of the dimensionless dissipation ratecdas the energy balance equation for MHD turbulence in
terms of Elsasser fields [5], and subsequently compare tliehegquation to DNS data [6].

DERIVATION OF THE MODEL EQUATION

For simplicity and in order to compare to results in the &tere we consider the caseBf = v/n = 1, wherev denotes

the kinematic viscosity anglthe resistivity. In order to obtain stationarity, we assuhwsystem to be forced at the large
scales. The real-space energy balance equation of MHDIlamte can be used in order to study the Reynolds number
dependence of the dimensionless dissipation €atafter appropriate non-dimensionalisation. Since we aerésted

in the total dissipatiorr = €,,44 + €rin there are two possible approaches: either formulating tieegy balance in
terms of velocity and magnetic field fluctuationsand b; or in terms of Elsdsser variables. Singe= v one can set

et =¢—29,H,., wheres* denotes the dissipation rate with respect to the Elsasédefle= v+ bandH,. = (u-b) the
cross helicity. For the stationary ca3gd. = 0, and one obtains = £*. Thus the total dissipation rate can be described
either by the energy balance equation£dr[5], or by the sum of the energy balance equationg/feit)|?) and(|w(t)|?).

The situation is different for thdimensionless dissipation rate’. . If we want to define an analogue to the hydrodynamic
Taylor surrogate expression [7, 8], there are several esa€ scales with which to non-dimensionalise. Since thed tot
dissipation rate contains by definition magnetic and kinetintributions, scaling it using magnetic and kinetic term
would be more appropriate than scaling it with the rms vé&ya@ionly. Therefore we propose to define the dimensionless
dissipation rate with respect to Elsasser figlds= st+/(z+22*), wherelL_+ is the integral scale defined with respect
to z* andz* the rms values of*. Using this definition we can now consistently non-dimenalise the energy balance
equation written in terms of ™, which reads for the stationary case
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whereC/ /"7, BT and B} are the longitudinal correlation and structure functioosesponding to=* and (r)
is a scale-dependent energy input term. For scales muchesrttan the forcing scale the energy input will be scale-
independent, that if(r) = ey . Hereey is the total rate of energy input, which must equal the toisdigation in the
stationary case, hence
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Introducing the nondimensional variahle= r/L.+ and non-dimensionalising the energy balance equationreshect
to z* andL,+ as proposed in the definition 6%, one obtains
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Note that the inverse of the coefficient in front of the diasiye term has the form™ L+ /(v + n), which is similar to a
Reynolds number. Thus we introduce the generalised largle-Reynolds numbek,- = 2z L.+ /(v + n).

This already suggests a dependenc€pobn 1/R, -, however, the structure and correlation functions alselade-

pendence on Reynolds number. Therefore we consider astim@kpansions of the dimensionless functions in inverse
powers ofRR—, which leads to the model equation

C D
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COMPARISON TO DNS DATA

Figure 1 shows error-weighted fits of the model equation tsfdta. As can be seen, the model fits the data very well,
provided we include terms of second orderin-. For R,- > 80, it is sufficient to consider terms of first order iR, -

only. The asymptote has been calculated t@’bg, = 0.218 & 0.002, where the error encompasses both the statistical
standard error of the data and the error of the fit.
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Figure 1. The expression given in equation (4) fitted to DNS data. Thielire shows a fit to data foR, - > 80 to first order in
1/R, -, the black line results from a fit using all data points anduding terms up to second orderifR, .
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