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Abstract Results on the Reynolds number dependence of the dimensionless total dissipation rateCε are presented, obtained from
medium to high resolution direct numerical simulations (DNSs) of mechanically forced stationary homogeneous magnetohydrodynamic
(MHD) turbulence in the absence of a mean magnetic field, showing thatCε → const with increasing Reynolds number. Furthermore,
a model equation for the Reynolds number dependence of the dimensionless dissipation rateCε is derived from the real-space energy
balance equation by asymptotic expansion in terms of Reynolds number of the second- and third-order correlation functions of the
Elsässer fieldsz±

= u ± b. At large Reynolds numbers we find that a model of the formCε = Cε,∞ + C/Rz− describes the data
well, while at lower Reynolds numbers the model needs to be extended to second order in1/R

z− in order to obtain a good fit to the
data, whereRz− is a generalised Reynolds number with respect to the Elsässer field z

− .
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INTRODUCTION

In the absence of a magnetic field it has been known for a long time that the total dissipation rate in forced and freely
decaying homogeneous isotropic turbulence tends to a constant value with increasing Reynolds number following a well-
known characteristic curve [1, 2]. Similar obervations have recently been reported in decaying magnetohydrodynamic
(MHD) turbulence [3, 4], where it was found that the temporalmaximum of the total dissipation in freely decaying
turbulent hydromagnetic systems tends to a constant with increasing Reynolds number, using results from direct numerical
simulations (DNSs). In this talk we present data from a series of DNSs of mechanically forced MHD turbulence on up
to 10243 grid points using the standard pseudospectral method with full de-aliasing, showing that the dimensionless
dissipation rateCε → const with increasing Reynolds number. Furthermore, we propose amodel for the large Reynolds
number behaviour of the dimensionless dissipation rate based on the energy balance equation for MHD turbulence in
terms of Elsässer fields [5], and subsequently compare the model equation to DNS data [6].

DERIVATION OF THE MODEL EQUATION

For simplicity and in order to compare to results in the literature we consider the case ofPr = ν/η = 1, whereν denotes
the kinematic viscosity andη the resistivity. In order to obtain stationarity, we assumethe system to be forced at the large
scales. The real-space energy balance equation of MHD turbulence can be used in order to study the Reynolds number
dependence of the dimensionless dissipation rateCε after appropriate non-dimensionalisation. Since we are interested
in the total dissipationε = εmag + εkin there are two possible approaches: either formulating the energy balance in
terms of velocity and magnetic field fluctuationsu andb; or in terms of Elsässer variables. Sinceη = ν one can set
ε+ = ε−2∂tHc, whereε+ denotes the dissipation rate with respect to the Elsässer field z

+ = u+b andHc = 〈u ·b〉 the
cross helicity. For the stationary case∂tHc = 0, and one obtainsε = ε+. Thus the total dissipation rate can be described
either by the energy balance equation forz

+ [5], or by the sum of the energy balance equations for〈|b(t)|2〉 and〈|u(t)|2〉.
The situation is different for thedimensionless dissipation rateCε. If we want to define an analogue to the hydrodynamic
Taylor surrogate expression [7, 8], there are several choices of scales with which to non-dimensionalise. Since the total
dissipation rate contains by definition magnetic and kinetic contributions, scaling it using magnetic and kinetic terms
would be more appropriate than scaling it with the rms velocity U only. Therefore we propose to define the dimensionless
dissipation rate with respect to Elsässer fieldsCε = εLz+/(z+2

z−), whereLz+ is the integral scale defined with respect
to z

+ andz± the rms values ofz±. Using this definition we can now consistently non-dimensionalise the energy balance
equation written in terms ofz+, which reads for the stationary case
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LL are the longitudinal correlation and structure functions corresponding toz± andI(r)
is a scale-dependent energy input term. For scales much smaller than the forcing scale the energy input will be scale-
independent, that isI(r) = εW . HereεW is the total rate of energy input, which must equal the total dissipation in the
stationary case, hence
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Introducing the nondimensional variableρ = r/Lz+ and non-dimensionalising the energy balance equation withrespect
to z± andLz+ as proposed in the definition ofCε, one obtains
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Note that the inverse of the coefficient in front of the dissipative term has the formz−Lz+/(ν + η), which is similar to a
Reynolds number. Thus we introduce the generalised large-scale Reynolds numberRz− = 2z−Lz+/(ν + η).
This already suggests a dependence ofCε on 1/Rz− , however, the structure and correlation functions also have a de-
pendence on Reynolds number. Therefore we consider asymptotic expansions of the dimensionless functions in inverse
powers ofRz− , which leads to the model equation
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COMPARISON TO DNS DATA

Figure 1 shows error-weighted fits of the model equation to DNS data. As can be seen, the model fits the data very well,
provided we include terms of second order inRz− . ForRz− > 80, it is sufficient to consider terms of first order inRz−

only. The asymptote has been calculated to beCε,∞ = 0.218 ± 0.002, where the error encompasses both the statistical
standard error of the data and the error of the fit.
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Figure 1. The expression given in equation (4) fitted to DNS data. The red line shows a fit to data forRz− > 80 to first order in
1/R

z− , the black line results from a fit using all data points and including terms up to second order in1/R
z− .
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