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Abstract The linear stability analysis of the steady flow is performed in a rapidly rotating sphere with strong precession. It is shown
that the localized mode destabilizing the boundary-layer flow determines the stability boundary, giving the asymptote, Po ∝ Re2/3,
which is consistent with the results obtained by direct numerical simulation.

A precessing sphere We consider the flow of an incompressible viscous fluid in a sphere which is spinning with a
constant angular velocity Ωs and precessing with another constant angular velocity Ωp perpendicular to the spin (see
Figure 1). The flow properties of this system are characterized by two nondimensional parameters, the Reynolds number
Re = a2Ωs/ν and the Poincaré number Po = Ωp/Ωs, where a is the sphere radius and ν is the kinematic viscosity of
fluid. Although this canonical flow has long attracted peoples’s attention as a simple model of rotating celestial bodies
especially with relation to the geophysical applications as well as the compact turbulence generator, the fundamental
properties, such as the structure of the steady flows and their instability boundaries over the whole parameter range have
not been studied systematically yet. Here we investigate the stability characteristics of the steady flow of this system.

Stability of steady flows Since the steady flow in a precessing sphere with arbitrary values of Re and Po is not simple
enough to be expressed analytically, the stability analysis must be performed numerically. We are currently performing
the stability analysis by direct numerical simulation, the stability boundary obtained so far is shown in Figure 2 with
dots, the right (or left) side of which is stable (or unstable). The current status of computer power inevitably limits us
the calculation for finite values of Po roughly in the range 0.06 < Po < 1.4. The asymptotic analysis would be useful
beyond this region. For lower region (Po � 1) we obtained the asymptote (Po = 21.25Re−4/5) which agrees excellently
well with experiment (not shown in Figure 2 but in Figure 1 of [2]). Here we consider the upper region (Po � 1), namely
the strong precession limit.

Flow structure in the strong precession limit It is well-known [1] that the flow is almost still in the precession frame
of reference in the limit of strong precession except for the thin boundary layer. Tthe thickness δ of the boundary layer is
of O((RePo)−1/2) except for the critical region around the great circle perpendicular to the precession axis (see the gray
circular belt in Figure 1) where the boundary-layer approximation breaks down. The thickness and width of this critical
region are of O(δ4/5) and O(δ2/5), respectively. In terms of the spherical polar coordinates (r, θ, φ) (with θ being the
polar angle from the z axis and φ being the azimuthal angle from −y axis) we introduce stretched coordinates (ξ, η) by
r = 1 − δ4/5ξ and cos θ = δ2/5η. The radial the polar and the azimuthal components of velocity, (uφ, uξ, uη), are of
O(δ2/5), O(δ0) and O(δ0), respectively. All of these three components are proportional to cosφ, and their distributions
on the φ = 0 plane are plotted in Figures 3 and 4.

Origin of the instability It is important to note here that the inertial waves which may be excited in the still region is
neutrally stable in the inviscid limit and that they always decay if the viscous effects (from the boundary-layer flow) are
taken into account. Moreover, the precession effects are too small to destabilize the inertial waves as long as the nonlinear
interactions are neglected. Thus we are tempted to examine the instability of the flow in the critical region of the boundary
layer.

Linear stability of the critical-region flow The disturbance equations can be derived easily by taking the linear terms
in the Navier-Stokes equations and the continuity equation. By taking account of the above-mentioned scalings in length
and velocity in the critical region and picking up the leading orders of the nonlinear term (having destabilizing effects)
and the viscous term (having stabilizing effects) we find Po = γRe2/3, where γ is an unknown constant to be determined
by solving the eigenvalue problem of the disturbance. This calculation is under way, and the value of γ will be presented
at the conference. For reference we draw the power law Po ∝ Re2/3 in Figure 1.

References

[1] Greenspan, H.P. The theory of rotating fluid.Cambridge University Press 1968.
[2] Kida. S. Localized unstable modes in a precessing sphere. ETC14 Abstract 164 (2013).



Figure 1. A precessing sphere spinning
with angular velocity Ωs around the x-
axis which is rotating with angular ve-
locity Ωp around the z-axis. The gray
circular belt represents the critical re-
gion of the boundary layer.

Figure 2. Stability boundary of the steady flow. The flow is stable or un-
stable in the left or right side of the line of dots which were obtained by
direct numerical simulation. The lower asymptote Po = 21.25Re−4/5

is taken from [2], whereas the upper one Po = γRe2/3, where γ is an
unknown constant to be determined, is the present result.

Figure 3. The streamlines of (uη, uξ) on the φ = 0

plane. The arrows indicate the flow direction.

Figure 4. The contours of uφ on the φ = 0 plane.
The white and gray areas indicate uφ > 0 and uφ < 0

respectively.


