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Abstract In porous media, a stratification of a given solution on top of another miscible solution can be buoyantly unstable because
of an unstable density stratification or because of differential diffusive effects. The former is the well known Rayleigh–Taylor (RT)
mechanism wherein the interface is destabilized by the denser solution overlying a less dense one in the gravity field. Whereas the latter
is of particular interest in the field of oceanography, when the upper solution is less dense than the lower one with the lower component
diffusing faster than the upper one, resulting in a double diffusive (DD) instability. Similarly, a diffusive-layer convection (DLC)
instability has also been observed for a stable density stratification with the upper solute diffusing faster than the lower one. Though
the literature on differential diffusion effects is pretty vast, very few studies have managed to establish a connection, both qualitatively
and quantitatively, between numerical simulations and experimental observations, which is the basis of the present study. We report
our findings in a broad parameter range where the instability mechanism could be triggered by an unstable density stratification or due
to differential diffusive effects, or even both, resulting in mixed modes [1].

EXPERIMENTAL OBSERVATIONS

Laboratory-scale experiments are typically carried out in vertical Hele-Shaw cells, which consist of two transparent plates
separated by a small gap (0.5 mm). For small enough gap widths, the flow evolution in a Hele-Shaw cell is described by
Darcy’s equations similar to the evolution equation for flows in porous media [2]. We consider a two-dimensional vertical
stratification of a solution A at a concentration A0 and density ρA overlying a miscible solution of B at concentration
B0 and density ρB with the gravity field pointing downwards in the negative y− direction. The two most important
dimensionless parameters are the ratio of the diffusion coefficients, δ, and the buoyancy ratio, R, which are defined as

δ =
DB

DA
and R =

αBB0

αAA0
, (1)

where DA and DB are the diffusion coefficients, αA and αB are the solutal expansion coefficients.
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Figure 1. Buoyantly driven instabilities obtained in a vertically oriented Hele-Shaw cell: (a) Rayleigh–Taylor instability corresponding
to (R, δ) = (0.75, 0.4), (b) double-diffusive instability corresponding to (R, δ) = (1.16, 3.167), (c) mixed-mode instability (DLC +

RT) corresponding to (R, δ) = (0.9, 0.3).

The dynamics of the contact line between both solutions is visualized through a Schlieren technique by tracking the
changes in the refractive index of the convective motions. Various buoyantly driven instabilities observed experimentally
are shown in figures 1(a)–(c). These instabilities result in ascending and descending fingers across the initial contact line
in a symmetric way [3, 4, 5].

NUMERICAL SIMULATIONS

To gain further insight into the nonlinear dynamics of the various differential diffusive instabilities and to make compar-
isons with our experimental observations, we perform nonlinear simulations. This would indeed permit us to explore a
wider parameter space, due to the time constraints inherent in laboratory-scale experiments. A finite-volume method has
been adopted to simulate the system of equations [6]. Extensive validations tests have been performed using comparisons
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Figure 2. Buoyancy-driven instabilities at the miscible interface between two fluids, visualized using the concentration map of A: (a)
Rayleigh–Taylor (R, δ) = (0.5, 1), (b) Double-diffusion (R, δ) = (1.16, 3.67), (c) mixed-mode instability (DLC + RT) (R, δ) =

(0.8, 0.3). (d) Mixing length as a function of time for various parameter configurations corresponding to DD instability. The red line
corresponds to a slope of 0.5 as the mixing length grows as t0.5 in a diffusive regime.

with theoretical linear stability analyses, and our results for our growth rate and wavelength are in excellent agreement
with them.

The different buoyancy-driven convective instabilities are shown in figures 2(a)–(c). As expected, the convective patterns
evolve the same way on both sides of the initial interface. Figure 2(d) shows the evolution of mixing length as a function
of time for various parameter configurations corresponding to DD instability. These observations are in congruence with
those presented in [4]. For the case of δ = 3 and R = 2, they had observed that the mixing length indeed grows as t0.5.
Decreasing the value of R has a destabilizing effect as the stabilizing density ratio is then decreasing, resulting in larger
values of the mixing length.

Currently comparisons on the wavelength and the growth rate of the mixing length under various parametric regimes
are being done to establish a connection between our experimental and numerical results. These would be presented in
detail during the conference.
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