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Abstract Turbulence models are expected to satisfy the conflicting requirements of accuracy and computational efficiency. Here we
discuss a new model that was recently developed in order to accurately and efficiently describe the dynamic of a clouds of tracer parti-
cles in Large Eddy Simulations of homogeneous and isotropic turbulent flows. The models incorporates the multi-scale nature of time
and space turbulent velocity correlations that are essential in order to correctly reproduce the relative dispersion of multi-particle clouds.
The model can be seen as an off-grid solver for the Eulerian velocity field at the positions of a given number of Lagrangian tracers that
self-consistently move with it. Extensions to non homogeneous and isotropic turbulence as well as to the dynamics of particles will be
discussed.

INTRODUCTION

The dispersion of particles by turbulent flows is a common phenomena in nature as well as in many industrial processes.
Due to the wide range of scales involved in turbulent flows, it is standard practice to perform under-resolved numerical
simulations that attempt at describing the dynamics of the largest scales while modeling the smaller ones. This general
idea, dubbed Subgrid Scale Modeling, needs to be extended to the Lagrangian domain when one is interested in the study
of the dynamics of particles.
Here we present a recently developed Lagrangian subgrid model for the dynamics of tracer particles that is capable of
correctly modeling the multiscale (both space and time) nature of turbulence velocity fluctuactions [1]. This Lagrangian
subgrid model has also the advantaged of being efficient, with a computational cost that grows with the number of particles
and thus rather inexpensive for limited number of tracers.

THE SUBGRID MODEL

The model evolves the dynamics of a number of tracers, N , that, in absence of (resolved) Eulerian velocity fluctuations,
are self-consistently evolved by their modeled velocities. The velocity fluctuations are describes on scales ln = L0/λ

n

with n = 0, . . . , Nm − 1, where L0 is the integral scale and λ is a logarithmically scaling factor, larger than unity, that
separates the resolved scales (we have arbitrarily taken it equal to λ = 21/4).
At each scale, ln, we associate a typical velocity fluctuation, thus mimicking the typical fluctuation on an eddy of that size
and given by un = q0 k

−1/3
n , where q0 is a typical large scale velocity. The presence of the factor kn = 2π/ln ensures

that the Kolmogorov 1941 scaling is imposed. Associated to these scales and velocities one can associate the expected
correlation times, τn = ln/un, that can be interpreted as the eddy-turnover times of the eddies.
Via a simple Ornstein-Uhlenbeck (OU) process it is easy to let the velocity fluctuations on the different scales fluctuate
with a correlation time given by τn:

ζ(i)n (t+ dt) = ζ(i)n (t) e−dt/τn + un
√
1 − e−2dt/τn g , (1)

The total velocity of a single tracer, i, may be defined as the sum of all these multiscale and multitime correlations, over
all scales n as follows:

v(i)(t) =

Nm−1∑
n=0

ζ(i)
n (t) . (2)

Such a simple procedure would however not ensure the fact that two close-by tracers must experience the same velocity.
In order to introduce the space correlation we do not employ the ζ

(i)
n (t) directly, in order to obtain the velocity of the

particles, but we first compute the following averages, v(i)
n (t), that are weighted by a function of the distance between

tracers:

v(i)
n (t) =

N∑
j=1

ζ(j)
n (t) · (1− fln(|xi − xj |)) . (3)



The function f(r) is responsible for the weighting and, e.g., it can be taken to be linearly growing from 0 to 1, as the
distance r grows from 0 to ln, and equal to 1, if r > ln. In this way the velocities of two nearby particles are correlated,
scale-by-scale, only if at a distance smaller that the size of the eddy, r, otherwise these are uncorrelated.

RESULTS

In Figure 1 (left panels) we report the behaviour of the velocity at two scales for a couple of tracers, initially close, that
separate in time. As it can be seen, while the original OU process produces totally uncorrelated signals, the modified
velocities display strong correlations, and thus similar velocities, when tracers are close-by and are instead uncorrelated
when tracers are distant from each other.
In Figure 1 (righ panel) we show that the modeled Lagrangian velocity is capable to correctly reproduce the relative
separation as expected from Richardson t3-law. It can further be shown that multiparticles distances evolve in close
agreement with the results from Direct Numerical Simulations [1]. In addition the model is capable to correctly reproduce
also one particle properties like e.g. absolute dispersion.
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Figure 1: (Left panels) Velocities for a single pair of tracers that are initially at a distance r0 smaller than the smallest eddy.
Top-left panel: velocity fluctuation (only one component is shown) corresponding to the mode n = 1. Bottom-left panel:
same but for the mode n = 10. The curves represent: the OU process is the solid black line while particle modulated
velocities are the solid red lines. Righ panel: plot of tracers relative dispersion (in log-log scale) for the simulations with
Nm = 31 (green circles) and Nm = 62 (red squares). The solid straight line indicates the slope for Richardson t3 scaling
regime that is expected in the inertial range.
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