## AN ALTERNATIVE DEFINITION OF ORDER DEPENDENT DISSIPATION SCALES

Jonas Boschung<sup>1</sup>, Michael Gauding<sup>2</sup>, Fabian Hennig<sup>1</sup>, Norbert Peters<sup>1</sup> & Heinz Pitsch<sup>1</sup> <sup>1</sup>Institute for Combustion Technology, RWTH Aachen University, Germany

<sup>2</sup>Chair of Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, Germany

<u>Abstract</u> While Kolmogorov's similarity hypothesis suggests that velocity structure functions scale with the mean dissipation  $\langle \varepsilon \rangle$  and the viscosity  $\nu$ , we find that the 2m even order scales with  $\langle \varepsilon^m \rangle$ . This implies that there are other cut-off lengths than the Kolmogorov length  $\eta$ . These cut-off lengths are smaller than  $\eta$  and decrease with increasing order and Reynolds-number. They are compared to a previous definition of order dependent dissipative scales by Schumacher et. al[4].

Although the governing equations for incompressible turbulent flows, the Navier-Stokes equations, are known for quite some time, it is not possible to solve them analytically. For that reason, statistical methods are applied to arrive at a better understanding of turbulent flows. In particular, correlation functions between two points separated by a distance r are of interest, as they describe spatial properties of the flow. As turbulence is a multi-scale problem, correlation functions and similar constructs are also suited to examine the properties of the flow at different scales. Kolmogorov[3] proposed two similarity laws, namely that the statistics of structure functions (the velocity difference between two points separated by a distance r) are determined by the viscosity  $\nu$  and the mean dissipation  $\langle \varepsilon \rangle$  for locally isotropic turbulence for small r (first hypothesis of similarity), while for r situated between the very small scales and the large scales the dependence on the viscosity  $\nu$  should vanish (second hypothesis of similarity). From the two quantities  $\nu$  and  $\langle \varepsilon \rangle$  relevant at the very small scales, he introduced  $\eta = (\nu/\langle \varepsilon \rangle)^{1/4}$  and  $u_{\eta} = (\nu \langle \varepsilon \rangle)^{1/2}$  as characteristic length scale and velocity, inasmuch as the second order structure function (the square of the velocity difference) should be completely determined by  $\nu$ ,  $\langle \varepsilon \rangle$  and a (unknown) function  $f(r/\eta)$  for all r. In a second paper[2], he proceeded to rewrite the Kárman-Howarth equation in terms of the second order longitudinal structure function. This allowed him to give analytic solutions for the second order structure function where L is the inertial length scale.

Expanding the second order  $D_{20} = \langle (u_1(x_i + r_i) - u_1(x_i))^2 \rangle$  for  $r \to 0$  gives

$$D_{20} = \frac{1}{2} \left\langle \left( \frac{\partial u_1}{\partial x_1} \right)^2 \right\rangle r^2.$$
(1)

Normalising with  $\eta$  and  $u_n^2$  yields

$$\frac{D_{20}}{u_\eta^2} = \frac{1}{15} \left(\frac{r}{\eta}\right)^2,\tag{2}$$

where  $\langle \varepsilon \rangle = 15\nu \langle (\partial u_1/\partial x_1)^2 \rangle$  due to isotropy has been used. Thus, the second order structure function collapses if normalised with  $\eta$  and  $u_{\eta}$  for all Reynolds-numbers in the dissipative range.

However, the fourth order  $D_{40}$  is determined by  $\langle (\partial u_1/\partial x_1)^4 \rangle$  (for  $r \to 0$ ) which can not be expressed in terms of  $\langle \varepsilon \rangle^2$  as the first similarity hypothesis would suggest. Rather, we find that  $D_{40}$  is collapsed by  $\langle \varepsilon^2 \rangle$ ,  $D_{60}$  by  $\langle \varepsilon^3 \rangle$  and so on. This implies that higher orders are cut off at different length scales, namely

$$\eta_{C,2m} = \left(\frac{\nu^3}{\langle \varepsilon^m \rangle^{1/m}}\right)^{1/4} \tag{3}$$

with velocity

$$u_{C,2m} = \left(\nu \left\langle \varepsilon^m \right\rangle^{1/m}\right)^{1/4}.$$
(4)

It follows from eq. (3) that

$$\frac{\eta_{C,2m}}{\eta} = \left(\frac{\langle\varepsilon\rangle^m}{\langle\varepsilon^m\rangle}\right)^{1/4m} \sim Re_{\lambda}^{-\frac{\alpha(m)}{4m}},\tag{5}$$

where  $\langle \varepsilon^m \rangle / \langle \varepsilon \rangle^m \sim Re_{\lambda}^{\alpha(m)}$  with  $\alpha(m+1) > \alpha(m) > 0$ . Therefore,  $\eta_{C,2m} < \eta$  and that ratio increases with Reynoldsnumber and order m. Figure 1 shows  $\eta_{C,2m}$  for m = 1, ..., 5 and  $Re_{\lambda} = 88, ..., 529$ . As expected, we find indeed that  $\eta_{C,2m}$  decreases with increasing Reynolds-number and order m.

Under the assumption that velocity increments at large scales follow a Gaussian distribution, Schumacher et. al.[4] derived

$$\eta_{2m} \sim Re_{\lambda}^{\overline{\zeta_{2m} - \zeta_{2m+1} - 1}} \tag{6}$$



**Figure 1.**  $\eta_{C,2m}$  as function of  $Re_{\lambda}$ .  $\circ m = 1$  (i.e. the Kolmogorov scale  $\eta$ ),  $\bigtriangleup m = 2$ ,  $\bigtriangledown m = 3$ ,  $\Box m = 4$  and  $\diamond m = 5$ .

where L is the integral length scale,  $Re_L$  the large scale Reynolds-number and  $\zeta_n$  the scaling exponent of the longitudinal structure function of order n in the inertial range. Rewriting eq. (6) and using eq. (5) then results in

$$\zeta_{2m+1} - \zeta_{2m} = \left(\frac{1}{2}\frac{\alpha(m)}{4m} + \frac{3}{4}\right)^{-1} - 1.$$
(7)

Thus, from the Hölder inequality (cf. Frisch[1]) we find that

$$\frac{\alpha(m)}{4m} \le \frac{1}{2} \tag{8}$$

and with eq. (5) that  $\eta_{C,2m}$  approaches a constant for a given Reynolds-number. Consequently, we find a modified upper limit of the number of required grid points for DNS simulations, i.e.

$$N \sim \left(\frac{L_{Box}}{\Delta x}\right)^3 \sim \left(\frac{L_{Box}}{L}\right)^3 \left(\frac{L}{\eta}\right)^3 \left(\frac{\eta}{\eta_{C,2m}}\right)^3 \lesssim \left(\frac{L_{Box}}{L}\right)^3 Re_L^3 \tag{9}$$

compared to  $N \sim R e_L^{9/4}$  for K41 theory.

## References

- [1] Uriel Frisch. Turbulence: the legacy of AN Kolmogorov. Cambridge university press, 1995.
- [2] Andrey Nikolaevich Kolmogorov. Dissipation of energy in locally isotropic turbulence. In Dokl. Akad. Nauk SSSR, 32, pages 16–18, 1941.
- [3] Andrey Nikolaevich Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. In *Dokl. Akad. Nauk SSSR*, **30**, pages 299–303, 1941.
- [4] Jörg Schumacher, Katepalli R Sreenivasan, and Victor Yakhot. Asymptotic exponents from low-reynolds-number flows. *New Journal of Physics*, **9**(4):89, 2007.