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Abstract While Kolmogorov’s similarity hypothesis suggests that velocity structure functions scale with the mean dissipation 〈ε〉 and
the viscosity ν, we find that the 2m. even order scales with 〈εm〉. This implies that there are other cut-off lengths than the Kolmogorov
length η. These cut-off lengths are smaller than η and decrease with increasing order and Reynolds-number. They are compared to a
previous definition of order dependent dissipative scales by Schumacher et. al[4].

Although the governing equations for incompressible turbulent flows, the Navier-Stokes equations, are known for quite
some time, it is not possible to solve them analytically. For that reason, statistical methods are applied to arrive at a better
understanding of turbulent flows. In particular, correlation functions between two points separated by a distance r are of
interest, as they describe spatial properties of the flow. As turbulence is a multi-scale problem, correlation functions and
similar constructs are also suited to examine the properties of the flow at different scales. Kolmogorov[3] proposed two
similarity laws, namely that the statistics of structure functions (the velocity difference between two points separated by
a distance r) are determined by the viscosity ν and the mean dissipation 〈ε〉 for locally isotropic turbulence for small r
(first hypothesis of similarity), while for r situated between the very small scales and the large scales the dependence on
the viscosity ν should vanish (second hypothesis of similarity). From the two quantities ν and 〈ε〉 relevant at the very
small scales, he introduced η = (ν/ 〈ε〉)1/4 and uη = (ν 〈ε〉)1/2 as characteristic length scale and velocity, inasmuch as
the second order structure function (the square of the velocity difference) should be completely determined by ν, 〈ε〉 and
a (unknown) function f(r/η) for all r. In a second paper[2], he proceeded to rewrite the Kárman-Howarth equation in
terms of the second order longitudinal structure function. This allowed him to give analytic solutions for the second order
structure function for r → 0 and the third order structure function in the inertial range η � r � L (under the assumption
of very large (infinite) Reynolds-number), where L is the inertial length scale.
Expanding the second order D20 =

〈
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2
〉

for r → 0 gives
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Normalising with η and u2η yields
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u2η
=
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, (2)

where 〈ε〉 = 15ν
〈
(∂u1/∂x1)2

〉
due to isotropy has been used. Thus, the second order structure function collapses if

normalised with η and uη for all Reynolds-numbers in the dissipative range.
However, the fourth order D40 is determined by

〈
(∂u1/∂x1)4

〉
(for r → 0) which can not be expressed in terms of 〈ε〉2

as the first similarity hypothesis would suggest. Rather, we find that D40 is collapsed by
〈
ε2
〉
, D60 by

〈
ε3
〉

and so on.
This implies that higher orders are cut off at different length scales, namely

ηC,2m =

(
ν3

〈εm〉1/m

)1/4

(3)

with velocity

uC,2m =
(
ν 〈εm〉1/m

)1/4
. (4)

It follows from eq. (3) that
ηC,2m
η

=

(
〈ε〉m

〈εm〉

)1/4m

∼ Re−
α(m)
4m

λ , (5)

where 〈εm〉 / 〈ε〉m ∼ Reα(m)
λ with α(m+1) > α(m) > 0. Therefore, ηC,2m < η and that ratio increases with Reynolds-

number and order m. Figure 1 shows ηC,2m for m = 1, .., 5 and Reλ = 88, .., 529. As expected, we find indeed that
ηC,2m decreases with increasing Reynolds-number and order m.
Under the assumption that velocity increments at large scales follow a Gaussian distribution, Schumacher et. al.[4] derived

η2m ∼ Re
1

ζ2m−ζ2m+1−1

λ (6)
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Figure 1. ηC,2m as function of Reλ. ◦m = 1 (i.e. the Kolmogorov scale η),4m = 2, Om = 3, �m = 4 and �m = 5.

where L is the integral length scale, ReL the large scale Reynolds-number and ζn the scaling exponent of the longitudinal
structure function of order n in the inertial range. Rewriting eq. (6) and using eq. (5) then results in

ζ2m+1 − ζ2m =
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1

2
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4m
+

3

4

)−1

− 1. (7)

Thus, from the Hölder inequality (cf. Frisch[1]) we find that

α(m)

4m
≤ 1

2
(8)

and with eq. (5) that ηC,2m approaches a constant for a given Reynolds-number. Consequently, we find a modified upper
limit of the number of required grid points for DNS simulations, i.e.
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L
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Re3L (9)

compared to N ∼ Re9/4L for K41 theory.
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