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Abstract We study numerically the long-time evolution of waves of a thin elastic plate for different energy input. In particular, we
focus on the possible existence of intermittency, intended mainly as highly non-gaussian features. We show that deviations from the
Kolmogorov- Zakharov scenario are present in high-order structure functions of the deplacement. This is more pronounced for higher-
energy input even though the limit of small deformation so that modes of oscillations interact weakly is globally kept valid.

INTRODUCTION

In this work, we consider an oscillating thin elastic plate[3, 2, 6], which can be studied in the framework of wave-
turbulence[7]. Plates are described through the dynamical version of Föppl-von Kàrmàn equations, which has been found
to be an accurate model[3].
We perform numerical simulations of the full nonlinear system. In all the presented results the linear plate size is the only
parameter of the numerics. We have used a pseudospectral scheme using FFT routines, with periodic boundary conditions:
the linear part of the dynamics is calculated exactly in Fourier space. The nonlinear terms are first computed in real space
and the integration in time is then performed in Fourier space using an Adams-Bashford scheme. It interpolates the
nonlinear term as a polynomial function of time (of order one in the present calculations). As time evolves, the random
waves oscillate with a disorganized behavior, as shown in Fig. 1.

Figure 1. Zoom over a portion of the surface plate deflection ζ(x, y).

RESULTS

To analyse intermittency and anomalous scaling, that is lack of self-similarity, the relevant tool are the structure-functions [5]:

Sp(r) = 〈|δζ(x, r)|p〉,

where isotropy has been used and the increment is defined as δζ(x, r) ≡ ζ(x+ r)− ζ(x). It is worth emphasizing that
statistics of deplacements and velocity are the same, since normal variables are a linear combination of both. Since the
spectrum Eζ ∼ k−n, with n ≥ 3 but a possible logarithmic correction, the cascade is not local and Wiener-Kinchin
therorem does not apply, so that ζ field is expected to be smooth and thus S2(r) ∼ r2. To cancel trivial scaling, higher-
order difference should be used, notably 2nd-order δζ2(x, r) = ζ(x+ r)− 2ζ(x) + ζ(x− r). In this case, we have

S2
2(r) = 〈(δζ2(x, r))2〉 ∼ r(n−1). (1)

In the case of a gaussian field, it is easy to show that for high-order structure functions S2
p(r) ∼ rp(n−1)/2, which in the

case of vibrating plates turns out to be S2
p(r) ∼ rp.

In figure 2, we show the main results of our simulations obtained in statistically stationary averaging over 107 time steps to
get much statistics. The exponent of second-order structure functions up to very high-order are shown. The exponent has
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Figure 2. Structure function of the displacement for different p.

been computed through Extended-self-similarity (ESS) procedure[1], and in order to avoid imprecision due to the possible
corrections to the spectrum, the exponent is shown normalized by the structure function with p = 2, that is correlation.
Different energy inputs are used, the reference one is the weak-one used in previous calculations[3], which were shown
to follow closely weak-turbulence theory. The gaussian prediction is also presented for comparison. Even though some
questions can be raised about the very high-order structure functions (p > 12) because of the possible lack of statistics, it
appears clear that:

1. Intermittency is always present, although it seems negligible in the weakest case for which gaussian prediction is
reasonably accurate.

2. Intermittency grows with increasing energy input. In the most energetic case, large deviations appear as important
as in strong turbulence[4].
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