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Abstract The new method for approximating the velocity and temperature of a flow within the boundary layers is developed by applying
the combination of the Falkner-Skan approach and perturbation theory. The former enables to include non-zero pressure gradient along
a heated horizontal plate where the flow is considered and the latter gives an opportunity to take into account buoyancy effects caused by
the temperature difference between the hot plate and the flow above it. It is assumed that buoyancy effects are small. The mathematical
model of the developed method includes four ordinary differential equations which are solved numerically. The approach is adapted to
Rayleigh-Bénard convection considered in a cylindrical cell at aspect ratio one. The results obtained by the mathematical model and
by direct numerical simulations of Rayleigh-Bénard convection are compared and are presented together with the conclusions made.
The simulations were conducted for a closed cylindrical cell of aspect ratio one at the Rayleigh number Ra = 3 × 109 and the Prandtl
number Pr = 0.7 and Pr = 7.0.
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INTRODUCTION

Turbulent Rayleigh-Bénard convection (RBC) occurs in a fluid confined between two isothermal horizontal plates heated
below and cooled above. In addition, the fluid is restricted by vertical walls forming a closed cylindrical cell. A single
large-scale circulation (LSC) is established in the cell of aspect ratio one. The thermal boundary layers are close to the
horizontal plates and the viscous boundary layers form at all rigid walls. It was noted in [1] that the boundary layers at
the horizontal plates of the cell can be transitional or even laminar for moderate Rayleigh numbers. This allows to apply
Prandtl’s equations describing a flow within laminar boundary layer to approximate the velocity and temperature of a flow
within the boundary layers attached to the bottom horizontal plate. The set of Prandtl’s equations can be reduced to an
ordinary differential equation (ODE) and a similarity solution can be easily found. The reduction leads to the Falkner-
Skan equation which is derived for non-zero pressure gradient if the distribution of the velocity above the boundary layer
follows to a power or an exponential law. The former can be adapted to RBC in the cylindrical cell and is typical for a
flow which runs along sides of a corner. The Falkner-Skan equation is used in [1] where the corner flow is observed in
some area of the RBC cell but the buoyancy term is neglected. In the current work the buoyancy is additionally taken
into account and its effect is to contribute to the longitudinal pressure gradient due to density variations which influence
only the buoyancy force. Therefore the set of Prandtl’s equations has two coupled equations and the reduction is not
possible. In this case a similarity solution cannot be found as it was done in [1]. An idea to search for a series solution
was developed in [2] where the buoyancy effects are considered as small but the longitudinal pressure gradient induced
by a basic forced convection is zero. In the present work we discuss a laminar boundary layer model that contains effects
of pressure gradient and buoyancy and compare the results with direct numerical simulation (DNS) data for turbulent
Rayleigh-Bénard convection.

BOUNDARY LAYER MODEL

In the absence of the coupling between Prandtl’s equations the reduction is done in two steps. The velocity components
are expressed via the stream function ψ (u = ∂ψ

∂y and v = −∂ψ
∂x ) and the stream function ψ and temperature T are

written via non-dimensional parameters f = f(ξ) and θ = θ(ξ), respectively, ξ is a new independent variable. These
substitutions lead to the Falkner-Skan equation but here it is not possible due to the coupling. The idea suggested in [2] is
to consider the buoyancy effects as small and to search for solutions in a form of series with some perturbative parameter
ε: f =

∑∞
m=0 ε

mfm, θ =
∑∞
m=0 ε

mθm. These series solutions give the perturbation of the forced convection flow due
to the buoyancy. The zero-order terms f0 and θ0 are associated with the purely forced convection flow and are solutions
of the equations of the Falkner-Skan case. Terms of higher order give the buoyancy effect. The series are truncated up to
the first order and substituted into the set of Prandtl’s equations. After substituting terms multiplied by εm with the same
power m, m = 0, 1 are grouped. This results in the final set of four ODEs with the unknown functions f0, f1, θ0, θ1
depending on the variable ξ and their derivatives. Each ODE is solved numerically and independently in some fixed order,
two ODEs are solved by the Adams-Bashforth method iteratively, others are solved by the simple Gaussian-elimination
method. Thus the final set of equations forms the mathematical model and gives the series solutions which are shown for
one case in figure 1 converted into the velocity along the axis x.



RESULTS

The approach developed in the current work was adapted to the RBC cell of a cylindrical form at the aspect ratio Γ = 1.
The corner flow can be observed in the area where the LSC moves towards the bottom horizontal plate at some angle of
attack, penetrates the boundary layers attached to this plate and runs along the plate. The angle of attack is determined
via points at horizontal and vertical walls of the turbulent cell where the time-averaged wall shear stress τw is equal to
zero. This can be seen as the green line in figure 2 where the mean flow which is aligned with the orientation of the
large-scale circulation is also shown. The value of the angle is used to compute the power k which comes from the power
law U ∼ xk and is included in the equations of the mathematical model. After determining the coefficient k the series
solutions of f and θ are computed by solving the model equations. Then the series solutions are used for computing the
velocity and temperature of the flow within the boundary layers. The angle of atack varies depending on time used for
averaging and control parameters used in performing DNS (Ra, Pr, Γ). Thus parameters involved in the mathematical
model are taken from DNS and results obtained from both sources are compared then. We use DNS at Rayleigh number
Ra = 3 × 109 and Prandtl numbers Pr = 0.7 and Pr = 7.0. Before comparing results units used in the mathematical
model must be converted into ones applied in DNS. There are several ways of converting units which are based on the
equality of values of the thickness of corresponding boundary layers, on the coincidence of the first extremums of profiles
and on the equality of the tangent of profiles at the wall. Our analysis, which can be considered as the final stage of what
can be achieved within the framework of laminar boundary layer theory, shows that the additional effect of the buoyancy
remains small compared to the one by the pressure gradient (see again figure 1 where model results and DNS data are
compared). This holds also for Pr > 1. In all cases an improvement compared to the Blasius case was found.

Figure 1. The comparison of the results of the velocity com-
ponent along the axis x obtained by the mathematical model
and DNS at Pr = 0.7.

Figure 2. The vector field of the velocity components
(ur, uz) averaged over time and taken at a vertical plane.
The plane is aligned with the instantaneous orientation of the
LSC, Pr = 0.7.
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