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LINEAR STABILITY OF A LIQUID FLOW THROUGH A POROELASTIC CHANNEL
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Abstract A liquid flow through a channel is studied based on the Orr-@enfield eigenvalue problem, where the lower wall of the
channel is occupied by the saturated poroelastic medium lifibar stability analysis is investigated in detail fopitnary value of the
wavenumber. The eigenvalues are computed numerically ing tise Chebyshev spectral collocation method. The effephygsical
parameters, for instance, permeability, elasticity as asetheir combined effect on the unstable modes are examined

INTRODUCTION
The flow through a poroelastic medium has recently triggerednsiderable interest because of its several application
in biological problems, such as flow through a blood vessareithe blood vessel can be considered as a poroelastic
medium. The transport of blood through a vessel plays anitapbrole in maintaining metabolism of the human body
and blood balance of the surrounding tissues [5]. Flow ogen@lastic medium is also of interest for biomimetic apglic
tions aiming to reduce turbulent drag. Further, poroetastiterials have been employed in wide range of technolbgica
processes, for instance, fluidic pump driven by elastic #anj2] and nanorod arrays used in DNA analysis and separa-
tion [1]. In general, poroelastic materials are biphasiadmof a solid skeleton along with interconnected poresutiito
which fluid passes and causes deformation to the solid sketkte to elasticity. In order to investigate these typeuf fl
problem in detail, we consider a model of pressure drivemobbflow where the lower wall of the channel is occupied
by the poroelastic medium. The sketch of the flow configuretian be found in figure 1. We implement two-domain ap-
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Figure 1. Sketch of a liquid flow through a poroelastic channel.

proach to deal with this problem, i.e., liquid and poroeatastedia are treated as distinct medium separated by arfdoger
and consequently, interface boundary conditions are requd complete the system. In the liquid medium, the flow is
governed by the Navier-Stokes equations. As, the flow in treqiastic medium is sufficiently slow in comparison with
the flow in the liquid medium, we focus only on the leading end&croscopic equations, i.€2(<°) equations, where

e =1/L < 1, Lis the characteristic length scale of the poroelastic doiimainacroscopic sense ahis the characteristic
length scale of pore in microscopic sense. These macrasegpgations are valid in the entire poroelastic medium and
are obtained by using the method of homogenization thegry [3

NUMERICAL EXPERIMENT
In order to study the linear stability analysis of the codpb®undary problem for arbitrary wavenumber, we use the
procedure as proposed by [4]. First of all, we recast theSdmmerfeld boundary value problem intd a 4 generalized
matrix eigenvalue problem
AX = wBX, Q)

wherew = ck is the eigenvalued andB are generalized matrices a¥d= [¢, b, X1, x2] is the corresponding eigen-
vector. The above eigenvalue problem (1) is resolved basdgtiedChebyshev spectral collocation method [4]. In this
method, each perturbation amplitude function in the columatrix X is expanded as a series of Chebyshev polynomials
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whereg;, ¢~>1 X1: andya; are unknown coefficients to be determined. As, the ChebysblswomialsT;(y) are defined
over the domairi—1, 1], thereby, it is necessary to transform the liquid-layer domfD, 1] to [—1, 1] and consequently,
we take a mapping = (z + 1)/2, wherexz € [—1,1]. Similarly, for poroelastic layef—d, 0], we take a mapping
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Figure2. (a) The spectrum of the eigenvalue problem (1) in the limftigh elasticity and low permeability, whén= 2, Re = 10000.
(b) The growth rate of the dominant unstable mode in the Regmumber versus wavenumber plane.

y = 0(x — 1)/2, wherez € [—1,1]. As aresult, the derivatives are transformedxoe= 2D, D? = 4D?, - - - for liquid

layer andD = (2/8)D, D? = (4/6%)D?, - - - for poroelastic layer. Here we keep at least hundred Chelwysblynomials

(N > 100) corresponding to each amplitude function in order to naaimgood accuracy in the numerical results. Further,
the present numerical code is tested with the known resutiéme Poiseuille flow [4] by assuming very low permeability
and very high elasticity. Basically, in this limit, the p@lastic layer behaves as a rigid solid layer and the entstery
automatic transforms into a pressure driven Poiseuille Between impermeable walls. Figure 2 represents the refsult o
limiting case. The main purpose of this study is to deciphghiase boundary in the parameter space where the individual
effect of permeability and elasticity on the most unstabteles are dominant. Further, the results are interpreteatrimst

of the ratio of the two characteristic time scales of the fots: the poroelastic time scale and the hydrodynamic time
scale.
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