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LINEAR STABILITY OF A LIQUID FLOW THROUGH A POROELASTIC CHANNEL
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Abstract A liquid flow through a channel is studied based on the Orr-Sommerfeld eigenvalue problem, where the lower wall of the
channel is occupied by the saturated poroelastic medium. The linear stability analysis is investigated in detail for arbitrary value of the
wavenumber. The eigenvalues are computed numerically by using the Chebyshev spectral collocation method. The effect of physical
parameters, for instance, permeability, elasticity as well as their combined effect on the unstable modes are examined.

INTRODUCTION
The flow through a poroelastic medium has recently triggereda considerable interest because of its several applications
in biological problems, such as flow through a blood vessel where the blood vessel can be considered as a poroelastic
medium. The transport of blood through a vessel plays an important role in maintaining metabolism of the human body
and blood balance of the surrounding tissues [5]. Flow over poroelastic medium is also of interest for biomimetic applica-
tions aiming to reduce turbulent drag. Further, poroelastic materials have been employed in wide range of technological
processes, for instance, fluidic pump driven by elastic filament [2] and nanorod arrays used in DNA analysis and separa-
tion [1]. In general, poroelastic materials are biphasic, made of a solid skeleton along with interconnected pores through
which fluid passes and causes deformation to the solid skeleton due to elasticity. In order to investigate these types of flow
problem in detail, we consider a model of pressure driven channel flow where the lower wall of the channel is occupied
by the poroelastic medium. The sketch of the flow configuration can be found in figure 1. We implement two-domain ap-
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Figure 1. Sketch of a liquid flow through a poroelastic channel.

proach to deal with this problem, i.e., liquid and poroelastic media are treated as distinct medium separated by an interface
and consequently, interface boundary conditions are required to complete the system. In the liquid medium, the flow is
governed by the Navier-Stokes equations. As, the flow in the poroelastic medium is sufficiently slow in comparison with
the flow in the liquid medium, we focus only on the leading order macroscopic equations, i.e.O(ε0) equations, where
ε = l/L ≪ 1,L is the characteristic length scale of the poroelastic domain in macroscopic sense andl is the characteristic
length scale of pore in microscopic sense. These macroscopic equations are valid in the entire poroelastic medium and
are obtained by using the method of homogenization theory [3].

NUMERICAL EXPERIMENT
In order to study the linear stability analysis of the coupled boundary problem for arbitrary wavenumber, we use the
procedure as proposed by [4]. First of all, we recast the Orr-Sommerfeld boundary value problem into a4× 4 generalized
matrix eigenvalue problem

AX = ωBX, (1)

whereω = ck is the eigenvalue,A andB are generalized matrices andX = [φ, φ̃, χ̃1, χ̃2]
T is the corresponding eigen-

vector. The above eigenvalue problem (1) is resolved based on the Chebyshev spectral collocation method [4]. In this
method, each perturbation amplitude function in the columnmatrixX is expanded as a series of Chebyshev polynomials

φ =

N∑

i=0

φiTi(y), φ̃ =

N∑

i=0

φ̃iTi(y) χ̃1 =

N∑

i=0

χ̃1iTi(y), χ̃2 =

N∑

i=0

χ̃2iTi(y). (2)

whereφi, φ̃i, χ̃1i andχ̃2i are unknown coefficients to be determined. As, the ChebyshevpolynomialsTi(y) are defined
over the domain[−1, 1], thereby, it is necessary to transform the liquid-layer domain [0, 1] to [−1, 1] and consequently,
we take a mappingy = (x + 1)/2, wherex ∈ [−1, 1]. Similarly, for poroelastic layer[−δ, 0], we take a mapping
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Figure 2. (a) The spectrum of the eigenvalue problem (1) in the limit ofhigh elasticity and low permeability, whenk = 2,Re = 10000.
(b) The growth rate of the dominant unstable mode in the Reynolds number versus wavenumber plane.

y = δ(x − 1)/2, wherex ∈ [−1, 1]. As a result, the derivatives are transformed toD = 2D, D2 = 4D2, · · · for liquid
layer andD = (2/δ)D,D2 = (4/δ2)D2, · · · for poroelastic layer. Here we keep at least hundred Chebyshev polynomials
(N ≥ 100) corresponding to each amplitude function in order to maintain good accuracy in the numerical results. Further,
the present numerical code is tested with the known result for plane Poiseuille flow [4] by assuming very low permeability
and very high elasticity. Basically, in this limit, the poroelastic layer behaves as a rigid solid layer and the entire system
automatic transforms into a pressure driven Poiseuille flowbetween impermeable walls. Figure 2 represents the result of
limiting case. The main purpose of this study is to decipher aphase boundary in the parameter space where the individual
effect of permeability and elasticity on the most unstable modes are dominant. Further, the results are interpreted in terms
of the ratio of the two characteristic time scales of the problems: the poroelastic time scale and the hydrodynamic time
scale.
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