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Abstract The inviscid nature of the of the inertial range of the turbulent energy cascade suggests that it should be reversible, and that

reverse cascade effects should remain in normal turbulence. Using a reversible LES model, we study some properties of the direct and

reverse cascades in isotropic turbulence. The reverse cascade is fairly stable and resilient to perturbations. The study of the Lyapunov

exponents and eigenvectors of both cascades allows us to compute a ’viscous’ limit below which the system is enslaved to larger scales,

and to characterize the most unstable solutions of the forward cascade. They appear to correspond to stretched vortices.

The inertial range is by definition not affected by viscosity or by energy injection processes, and it is reasonable to expect

that the dynamics of this range of scales is reversible. In practice, this is prevented by the irreversible dissipative range,

but it is known that reversibility can be achieved using some LES models[1]. We take advantage of this possibility to study

the reversible chaotic behaviour of the cascade itself. A Dynamic Smagorinsky LES[2, 4] is used to simulate the decay of

isotropic turbulence in a triply-periodic box without molecular viscosity. The numerical integration is alias-free Fourier

in space and 3rd-order Runge–Kutta in time stepping, with maximum wavenumber kmax = 42. Statistic are calculated

for an ensemble of up to 2000 realisations, computed on GPUs. After the system has decayed for a while, the sign of the

velocity field is reversed, ~u → −~u, after which the system evolves back, recovering energy and other turbulent quantities

(solid lines in Fig. 1). During the forward evolution, the energy cascades from large to small scales to be dissipated by

the model, whereas in the inverse evolution, energy is injected by the model and travels up to the large scales. Not only

the energy, but the full flow field is restored. Since the model acts mostly in the small scales, this behaviour shows that

not only the model is reversible, but also the inertial scales, where the model is negligible.
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Figure 1. (a) Energy evolution in time over minimum energy. Vertical dashed line marks reversal time. Solid red line, exact reversal;

dashed, approximate reversal for k > kmax/2. From blue to green: σ = [0.3, 0.1, 0.06, 0.02]. (b) Energy recovered for different

standard deviations of the phase perturbations at reversal. Dashed, small scale (k > kmax/2); solid, large scale (k < kmax/2).

Full recovery only takes place for the particular initial condition in which the velocities are exactly reversed. We check

the robustness of the reversibility by perturbing that condition. In those experiments, shown by dashed histories in figure

1a, a random phase shift is introduced in some velocity Fourier modes. The new transformation is ~̂u → −~̂u exp(i2πφ),
where φ is a Gaussian random variable with zero mean and standard deviation σ. Note that this procedure does not change

the energy of the system. Small (k > kmax/2) and large (k < kmax/2) scales are perturbed separately, and the amount of

energy recovered is given in Fig. 1b as a function of σ. Not surprisingly, the energy recovered decreases with increasing

perturbations. Also, the system is most sensitive to perturbing the large-scale , which contain most of the energy (95%),

but that difference is not large. The energy in the perturbations is proportional to the energy of the perturbed modes, and

it could be expected that perturbing the small scales would not be very effective. As we will see later, the reason that this

is not so is that the small scales are the most unstable in the reverse cascade.

It is striking that even for strong perturbations of the large scales, σ = 0.1, the energy at reversal is doubled. The energy

of the difference between those initial conditions and the exactly sign reversed ones is about 40% of the total. This shows

that, although this inverse cascade is unlikely to be found in real situations, it is resilient and dynamically robust.

Further analysis of the stability and chaotic nature of the system is carried out by calculating the most unstable short-time

Lyapunov exponent (STLE), which measures the divergence of nearby trajectories in phase space. Both for the inverse

and the direct phases of the evolution, a small random perturbation δ is introduced in the initial conditions, u′ = u+δ, and

both flows are evolved. Initially, δ is not aligned to the most unstable direction, but that ‘eigenvector’ eventually prevails.

To allow this alignment while avoiding nonlinear effects, the magnitude of |δ| is periodically rescaled to some small value

without changing its direction [3]. The STLE is calculated as λ(t) = 1/∆t log(|δ(t+∆t)|/|δ(t)|).
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Figure 2. (a) STLE evolution in time for direct (blue) and inverse (red) cascade. (b) Mean premultiplied spectra of perturbation vector

δ for direct (blue solid) and inverse (red dashed) cascade. Dashed black line is kηǫ = 0.25, the limit for the viscous boundary.

Figure 2a shows the evolution of the STLEs for the direct and reverse cascades. They are normalized with a dissipative

time, tǫ, obtained from the dissipation ǫ and a spatially averaged eddy viscosity obtained from ǫ and the averaged enstro-

phy, νǫ = ǫ/ω2. A pseudo-Kolmogorov length scale can then be formed that plays the role of a viscous length for the

model. Figure 2a shows the convergence of the exponents, and hopefully their eigenvector, to their asymptotic states. As

expected, the system is chaotic in both directions, with positive STLEs. The value λtǫ = 1.25 matches the values found

in [3] for a DNS turbulent channel. The STLE of the reverse evolution is different from the direct one. Because of the

time reversal, it represents the most contractive or stable exponent in the direct case.

If we interpret the STLE as the inverse of a time scale, and assume inertial relations, the largest forward exponent can

be associated to the length scale, lλ = (ǫ/λ3)1/2, that marks the small-scale boundary for the chaotic behaviour of the

system. The direct exponent corresponds to the eddy turnover time of the smallest scale where the chaotic behaviour of

the system is not constrained by the model. Smaller scales contract in phase space and remain coupled to the dynamics of

the larger ones. In pseudo-Kolmogorov units, lλ = 25ηǫ or kηǫ = 0.25, and it is interesting that a similar limit was found

in [5] for DNS.

Although the Lyapunov vectors selected by the STLE procedure are not real eigenvectors, because they change in times

and differ for different trajectories, it is interesting that their energy spectrum is very nearly the same in most of our

experiments. The converged mean spectra of the direct and reverse δ are shown in Fig. 2b. In the direct case, the

perturbation is concentrated below lλ < 25ηǫ, implying that a perturbation with that spectrum is the most unstable

feature of the flow, and dynamically behaves as a block. Although the shape of this perturbation field in physical space is

different for each experiment, not only its spectrum but its statistics are fairly stable. It will be shown in the final paper

that it appears to correspond to a stretched vortex.

The spectra of the most unstable reverse δ is shown as a dashed line in Fig. 2b. It represents the perturbation that is

damped the fastest in the direct cascade, and shows how the inverse cascade is more sensitive to perturbations in the small

scales. It is interesting that its support coincides with the constant part of the direct eigenvector, suggesting that the most

unstable forward perturbation is enslaved below its dissipative limit because the effect of the model is to contract it onto

the attractor. It is then clear how kηǫ = 0.25 sets the limit from which the model has an important effect in the dynamics.

Smaller scales are bound together by the model, behave as one unique block and are at the same time driven by the effect

of the dynamics of scales larger than kηǫ = 0.25.

In summary, we have shown that the reverse energy cascade is statistically improbable but quite robust. Even when

strongly perturbed, the reverse flux of energy survives, suggesting that it may play an important role in local regions of

natural cascades. Furthermore, time symmetry allows us to study the largest and smallest short-time Lyapunov exponents.

The former is associated to the expanding chaotic features of the flow, whereas the latter is related to the contractive nature

of the LES model. The time scale of the largest STLE sets the limit of a ’viscous’ boundary, below which the model acts

as a constraint to chaos and the dynamics are enslaved to larger scales.
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