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Abstract Effects of high-Prandtl number density-stratifying scalar, i.e., active scalar, on decaying and forced turbulence in stratified
fluids are investigated by numerical simulations. In decaying turbulence, potential energy spectrum of the high-Prandtl number active
scalar (Pr = 6) agrees with the kinetic energy spectrum even at small scales. In forced steady turbulence, these two spectra again
approach each other at small scales. These phenomena, which are in disagreement with the Batchelor scaling [1] for a high-Schmidt
number passive scalar, occur at scales even smaller than the Ozmidov scale, suggesting that these effects would not be negligible in
general.

We consider a fluid containing two scalars T∗ and S∗, which have different Prandtl numbers PrT = κT∗/ν∗ = 1 and
PrS = κS∗/ν∗ = 6 (κT∗, κS∗: diffusion coefficients, ν∗: kinematic viscosity, and dimensional quantities are denoted
by asterisks.) in contrast to many previous studies [2] ,[3], [4]. These two scalars have constant mean vertical gradients
NT∗ ≡ dT̄∗/dz∗(< 0) and NS∗ ≡ dS̄∗/dz∗(< 0), where z∗ is the vertical coordinate and the undisturbed mean density
is given by ρ̄∗(z∗) = ρ0∗(1+α∗NT∗z∗ + β∗NS∗z∗). In this study, however, only one of the scalar (T∗ or S∗) is an active
scalar and the other is a passive scalar, so that either α∗ or β∗ is zero.

Both the decaying and the forced turbulence are investigated in this study by direct numerical simulations. The
governing equations are solved by the pseudo-spectral method with the resolution of 2563 for the periodic cubic region
with the domain size of 6π.

In decaying turbulence, we initially give an isotropic velocity fluctuations, whose rms velocity and integral length
scale are given by U0∗ and L0∗. If T∗ is an active scalar, the Navier-Stokes equations under Boussinesq approximation
and the convection equations for two scalars are given by (cf. [5])
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in which physical quantities are non-dimensionalized by the length scale L0∗ and the velocity scale U0∗, T and S represent
scalar perturbations, and i = 3 denotes the vertical component. The Reynolds number and the Froude number are defined
by Re = U0∗L0∗/ν∗ and Fr = U0∗ ∗ /(N∗L0∗), where N∗ is the Brunt-Väisälä frequency.

On the other hand, in forced turbulence, external forcing injects energy randomly only into the horizontal modes
(k3 = 0) of horizontal velocity components (cf. [6]). The energy injection rate is fixed at P∗, and the length scale of
forcing is characterized by the forcing wavenumber kf∗. Non-dimensionalization using the length scale L∗ = 1/kf∗ and
the velocity scale U∗ = (P∗/kf∗)

1/3, and the definition of the Reynolds number by Re = U∗L∗/ν∗ = P
1/3
∗ /(k

4/3
f∗ ν∗)

and the Froude number by Fr = U∗/(N∗L∗) = P
1/3
∗ k

2/3
f∗ /N∗ lead to the same governing equations as (1) and (2), except

for the forcing term.
We first show the results of decaying turbulence with Re = 90 and Fr = 0.2, for which the initial Taylor micro-scale

Reynolds number is Reλ ∼ 50. Figure 1a and b present the horizontal spectra of velocity and two scalars when only low-
Pr scalar T (Pr = 1) is an active scalar (figure 1a), and when only high-Pr scalar S(Pr = 6) is an active scalar (figure
1b). In figure 1a, spectrum of the passive scalar S with high Pr(= 6) has large fluctuations at small scales, consistent with
the Batchelor scaling [1], while the spectrum of active scalar T (Pr = 1) almost agrees with that of kinetic energy as can
be easily expected. On the other hand, in figure 1b, the spectra obey the Batchelor scaling only very initially before the
buoyancy force becomes effective, and the small scale fluctuations of high-Pr active scalar S(Pr = 6) rapidly decrease
to finally agree with the spectra of the kinetic energy and the other passive scalar T (Pr = 1), which are at higher levels
than in figure 1a. These results show the deviation from the usual Batchelor scaling for a high-Prandtl number active
scalar. Examination of the spectrum of the vertical flux shows that the potential energy of high-Pr scalar is persistently
converted into the vertical kinetic energy through the negative, i.e., counter-gradient, vertical density flux.

We next show the results for the forced (steady) turbulence with Re = 40, F r = 0.2, for which the Taylor micro-scale
Reynolds number is Reλ ∼ 80. Figure 2 a and b display the horizontal spectra when only the low-Pr scalar T (Pr = 1)
is an active scalar (figure 2a), and when only the high-Pr scalar S(Pr = 6) is an active scalar (figure 2b). We observe in
figure 2a that the passive scalar S(Pr = 6) has the largest fluctuations at small scales as in the decaying turbulence (cf.
figure 1a). On the other hand, in figure 2b, the small-scale fluctuations of high-Pr active scalar S(Pr = 6) somewhat
decreases to approach the spectra of kinetic energy and the other passive scalar T (Pr = 1), which are at higher levels



than in figure 2a. Although the agreement of three spectra is not so complete as in the decaying turbulence, qualitative
trend is similar in the decaying and the forced turbulence. Namely, the potential energy spectrum of the high-Pr active
scalar and the kinetic energy spectrum tends to agree, even at small scales.

We should finally mention that this tendency to spectral agreement occurs even at scales smaller than the Ozmidov
scale where the buoyancy effects would be small. For example, in figure 2, the Ozmidov scale is at kh ∼ 13, while the
tendency to agreement is observed even at much higher wave numbers.
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Figure 1. Horizontal spectra of kinetic energy and two scalars in decaying turbulence at t = 37.5, with initial values of Re = 90 and
Fr = 0.2. Spectra are defined by KE = u2

i /2 =
∫
EK(kh)dkh, T 2/(2Fr2) =

∫
ET (kh)dkh and S2/(2Fr2) =

∫
ES(kh)dkh,

where overlines denote the average in space. (a) T (Pr = 1): active, S(Pr = 6): passive; (b) S(Pr = 6): active, T (Pr = 1):
passive.
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Figure 2. Horizontal spectra of kinetic energy and two scalars in forced steady turbulence with Re = 40, F r = 0.2. The spectra
are averaged over the period of 45 ≤ t ≤ 75. The spectral peak at the wavenumber of 1 corresponds to the forcing wavenumber. (a)
T (Pr = 1): active, S(Pr = 6): passive; (b) S(Pr = 6): active, T (Pr = 1): passive.
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