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Abstract We report the results from two distinct direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection (RBC)
for Rayleigh number of105 and Prandtl number of0.7 in a laterally unbounded domain confined between two horizontal isothermal
plates with no-slip and free-slip boundary conditions respectively. The central aim of the present work consists in a simultaneous
description of both flows in a compound physical/scale spacedomain by using a generalized form of the classical Kolmogorov equation
for the second-order velocity structure function. It has been found that the dynamics of the coherent structures in RBC,the so-called
thermal plumes, are clearly reflected in the multi-scale energy budgets. In particular, the enlargement of thermal plumes following the
impingement at the wall entails a transfer of scale-energy from small turbulent scales toward larger ones. This aspect shed light on the
role of thermal plumes in turbulent RBC and could have a direct impact on future attempts to model the effects of small-scale motions
in thermal convection.

ANALYSIS OF THE FLOW TOPOLOGY

It is well known that the most prominent structures in turbulent RBC are the so-called thermal plumes, which can be
defined as localized portions of fluid having a temperature contrast with the background [1]. Hot and cold plumes detach
respectively from the lower and the upper wall, stretch across the domain and, finally, enlarge close to the opposite plate.
Furthermore these structures have a sheet-like form at the beginning, whereas they take the appearance of a mushroom
sufficiently away from the starting point [2]. By considering the two-dimensional divergence of the velocity field in the
xy-plane, it is possible to measure both the horizontal enlargement and narrowing of thermal plumes [3]. Figure 1(a)
and (b) show an hot isosurface of temperature (θ = 0.25) coloured with the horizontal divergence of the velocity field
divπ = ∂u/∂x+ ∂v/∂y for the turbulent RBC with no-slip and free-slip boundary conditions respectively. In both cases,
two distinct events can be identified in terms of the horizontal divergence: the ejection (divπ < 0) and the impingement
of thermal plumes (divπ > 0). Adjacent regions of positive divergence are separated bythin filaments having a negative
divergence, hence the sheet-like roots protrude from the thermal boundary layer mainly as a consequence of the mechan-
ical action of impinging plumes. Furthermore, the intersection of different sheet-like roots leads to a large concentration
of momentum, which is in turn responsible, together with thebuoyancy forces, for the ejection of new structures. In
Figure 1(c) the quantities〈divπ〉+ and−〈divπ〉−, where〈divπ〉+ = 〈divπ〉 for divπ > 0 and〈divπ〉− = 〈divπ〉 for
divπ < 0, are plotted. These conditional statistics allow us to display the magnitude of both the impingement (〈divπ〉+)
and the ejection (〈divπ〉−) as a function of the distance from the wallz∗ = 0.5 − |z|. As can be expected, the plume
dynamics changes deeply from the free-slip case to the no-slip one especially close to the walls. In particular, the peaks
of both impingement and ejection in the free-slip flow are located atz∗ = 0, see the inset of Figure 1(c), whereas in
the no-slip one the impingement reaches its maximum atz∗ = 0.07 and the ejection is peaked slightly further away at
z∗ = 0.10, see the main plot in Figure 1(c). The different interactionof thermal plumes with the vertical boundaries is a
discriminating factor in turbulent RBC dynamics which can be analyzed successfully in terms of multi-scale energetics.
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Figure 1. (a) Top view of the isosurface of temperature atθ = 0.25 for the no-slip and (b) the free-slip flows coloured by the horizontal
divergencedivπ. (c) Main plot: 〈divπ〉+ (solid line) and−〈divπ〉

−
(dashed line) vs.z∗ for the no-slip case. Inset: as the main plot

but for the free-slip case.



MULTI-SCALE ANALYSIS OF THE FLOW

The production, transport and dissipation of velocity fluctuations depend both on the geometrical location within the flow
and on the turbulent scale considered i.e. they are inherently multi-scale. In this scenario, a compound description in
the physical/scale space is required to understand the physics of turbulent convection [4]. An appropriate candidate to
consider for a simultaneous description of turbulent dynamics in physical and scale space is the second-order velocity
structure function
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will be referred to as scale-energy, indeed it can be considered as a roughly measure of
the kinetic energy at scale|ri|. The budget for
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is referred to as generalized Kolmogorov equation and it represents
an extension to an inhomogeneous flow of the balance proposedby Kolmogorov [6] for homogeneous and isotropic
turbulence. It can be obtained following the procedure described in [5] and corresponds to
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where the asterisk denotes the mid-point average,β∗ = (β(xi) + β(xi + ri))/2 for a generic quantityβ. Here,p
is the pressure field,θ is the temperature one,w is the velocity componentu3 and 〈ǫ〉 is the average rate of pseudo-
dissipation. The balanced terms depend on the separation vector ri and on the geometrical coordinateZc = z + rz/2,
whererz = r3. The first, the second and the third terms on the left hand sideare respectively the inertial, the pressure
and the viscous contributions to the transport in physical space, whereas the fourth and the fifth terms are respectivelythe
inertial and the viscous contributions to the transfer in the scale space. The first and the second terms on the right hand
side are the buoyant production and the viscous dissipationof scale-energy. The classic turbulent kinetic energy budget
represents a limit case of the scale-energy budget, indeed equation (1) converge to four times the single-point budget
at sufficiently large separations [7]. By consideringrz = 0 and by averaging equation (1) over a circleC of radiusr,
(
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C(r) drxdry , we obtain ther-averaged scale-energy budget

Ic(r, Zc) + P (r, Zc) +Dc(r, Zc) + Ir(r, Zc) +Dr(r, Zc) = Π(r, Zc) + E(Zc), (2)

where each term corresponds to the appropriate term in equation (1). The buoyant production and the viscous dissipation
can be condensed into a single termS = Π + E. Furthermore, by defining an overall contribution to the transport in
physical spaceTc = Ic+P +Dc and an overall contribution to the transfer in the space of scalesTr = Ir +Dr, equation
(2) can be rewritten in the compact form

Tc(r, Zc) + Tr(r, Zc) = S(r, Zc). (3)

It clearly emerges from equation (3) the role of the termS as a source of two distinct scale-energy fluxes: one in the
physical space and the other in the scale space. The spatial flux induced by the vertical inhomogeneity modulates the scale-
energy budget in such a way that a reverse flux of scale-energyin the space of scales (from small toward largerr) occurs
inside a localized region of the(r − Zc)-space. This particular phenomenon has never been observednor investigated in
turbulent RBC and could have strong repercussions on both theoretical and modeling approaches to convective turbulence.
The reverse flux of scale-energy is found to be related with the dynamics of the coherent structures close to the walls in
both the free-slip and the no-slip flows. In particular, the peak of the reverse flux is observed at the same distance from the
wall as the maximum of〈divπ〉+, which measures the uttermost enlargement of thermal plumes due to the impingement.
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