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Abstract Differently to Kolmogorov’s second similarity hypothesis, we find that the 2n-th order velocity and scalar
structure functions scale with 〈εn〉 and 〈χn〉, respectively. The origins of this scaling are analyzed by the transport equations
of the fourth order velocity and scalar increment moments and by direct numerical simulations.

Since the seminal work of Kolmogorov [1941a,b] the scaling of structure functions in statistically isotropic and
homogeneous turbulence has been of paramount interest. Structure functions can be defined by the moments of the
velocity or scalar increments, and read for the velocity increment

Sn,m(r) = 〈(u1(x1 + r)− u1(x1))n (u2(x1 + r)− u2(x1))m〉 , (1)

where r is the separation distance between two independent points and the angular brackets denote an ensemble-
average. Kolmogorov’s theory proposes that structure functions follow a power-law scaling relation.

In the dissipative range, for r → 0, the structure functions become analytical and can be expanded as
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Kolmogorov’s first similarity hypothesis proposes that statistics in the dissipative range depend solely on the mean
dissipation 〈ε〉 and on the viscosity ν. However, velocity gradients, as small-scale quantities, exhibit a probability
density function with a complex shape and stretched-exponential tails. This tails originate from strong rare events
which are non-universal and generally depend on Reynolds number. Higher order moments are mostly determined
by the tails of the probability density function. Therefore, it cannot be expected that higher order moments of the
velocity derivative can be expressed in terms of 〈ε〉. Instead, dimensional analysis suggests that the 2n-th moments
of the velocity gradients scale with 〈εn〉/νn rather than with 〈ε〉n/νn. Note, that this relation is not derived from
first principles, but it is supported by DNS calculations as shown in tab. 1 where the ratios,
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〉/〈εn+m〉 , (3)

are given as a function of the Taylor based Reynolds number for the fourth order. Indeed, the value of this ratio
is independent of Reynolds number. The same result is valid for the sixth order. The non-dimensional ratios
〈εm〉/〈ε〉m are known to depend on Reynolds number, cf. Nelkin [1994], with 〈εm〉/〈ε〉m ∝ Ref(m)

λ .

Table 1. Evaluation of eq. 3 from direct numerical simulations for Reynolds numbers between Reλ = 88 and Reλ = 754.
Reλ 88 119 184 215 331 529 754

ν2〈
(
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)4
〉/〈ε2〉 0.0096 0.0096 0.0095 0.0096 0.0095 0.0095 0.0095
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〉/〈ε2〉 0.0537 0.0551 0.0570 0.0575 0.0586 0.0588 0.0596

ν2〈
(
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)4
〉/〈ε2〉 0.0078 0.0078 0.0080 0.0080 0.0080 0.0080 0.0080

Figure 1 shows the fourth and sixth order longitudinal velocity structure functions as well as the fourth and sixth
order scalar structure functions for Taylor based Reynolds numbers varying between 88 and 754. The structure
functions are compensated by their dissipative range scaling. We find that for the passive scalar structure functions
this scaling collapses the curves for all Reynolds numbers in the dissipative and inertial range, indicating that the
dissipative range scaling is valid as well in the inertial range. This is different for the velocity structure functions.
Here, the compensation by the dissipative range scaling collapses the curves in the dissipative range, but not entirely
in the inertial range.

The difference in the scaling between scalar and velocity structure functions is further analyzed by their respective
dynamic equations. The transport equation for the fourth order longitudinal velocity structure function reads
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Figure 1. Fourth (left) and sixth (right) order longitudinal velocity (top) and scalar structure functions for Taylor based
Reynolds numbers between 88 and 754. The curves are compensated with Kolmogorov’s scaling (solid lines) and the dissipative
range scaling (dashed lines).

where T4,0 is a pressure term and E4,0 is a dissipation term, cf. Hill [2014]. The transport equation for the fourth
order scalar structure function reads
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Equations 4 and 5 exhibit both the same structure. They describe the balance between a temporal term, a transport
term, a dissipation term, and a diffusion term (from left to right). However, eq. 4 additionally comprises the
pressure term T4,0 which modifies the inertial range scaling, cf. Kurien and Sreenivasan [2001]. Therefore, for the
fourth order velocity structure function, the statistics of the dissipation are not sufficient to fully collapse the curves
in both dissipative and inertial range. In the dissipative range the pressure term scales as T4,0 ∝ r3, while the
dissipation term scales as E4,0 ∝ r2. Thus, for r → 0 the dissipation effect is dominant, and the velocity structure
functions can be collapsed solely by the moments of the dissipation according to eqs. 2 and 3.
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