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Abstract This paper discusses the evolution of the droplet size distribution for a liquid-in-gas aerosol contained in a Rayleigh-Bénard
cell. It introduces a non-collisional model for broadening the droplet size distribution, termed ‘convective ripening’. The paper also
considers the initiation of rainfall from ice-free cumulus clouds. It is argued that while collisional mechanisms cannot explain the pro-
duction of rain from clouds with water droplet diameters of 20 µm, the non-collisional convective ripening mechanism gives a much
faster route to increasing the size of the small fraction of droplets that grow into raindrops.

INTRODUCTION

The dynamics of the onset of rainfall from ice-free (‘warm’) cumulus clouds is poorly understood [1, 2, 3]. Coalescence of
droplets which collide due to differential rates of gravitational settling is effective for droplets with radius a above 50µm,
and leads to a runaway growth to produce millimetre-scale raindrops [4]. Many clouds are found to contain droplets with
radius approximately 8 − 15µm [1, 2, 3], which result from primary condensation onto aerosol nuclei. For droplets in
this size range, growth by collisional coalescence is slow because the product of the collision rate and the coalescence
efficiency is low [1]. This makes it difficult to explain observations of the rapid onset of rainfall from warm cumulus
clouds.
It is, therefore, desirable to formulate models for non-collisional growth of water droplets, in which some droplets are able
to grow at the expense of others shrinking, by transferring water molecules between droplets as water vapour. It has been
suggested that condensation processes may be able to cause the droplet size distribution to broaden due to fluctuations in
the degree of supersaturation. This possibility has been addressed by numerous authors: see, for example, [5, 6, 7, 8, 9].
These investigations have used numerical simulations, and it is difficult to draw conclusions which are applicable to real
clouds because of the limited range of size scales which can be simulated reliably. A difficulty with most of these models
is that the droplets both grow and shrink as the supersaturation fluctuates. This work, however, introduces a model for
which there is an asymmetry between growth and shrinkage.
This work considers how the process works in the simplest relevant model, which is an aerosol in a Rayleigh-Bénard
convection cell. As well as having fewer physical parameters than a cloud, this system can be subject to a carefully
controlled laboratory investigation.

RIPENING IN A TURBULENT CONVECTION CELL

Now consider the response of an aerosol to convective motion in a Rayleigh-Bénard cell. This is a consequence of how
the temperature changes along the trajectories of the aerosol droplets (which are assumed to be advected by the flow).
Turbulent convection in a Rayleigh-Bénard cell is reviewed in [10]. The upper and lower plates are at temperatures Tup
and Tlow respectively. The expectation value of the temperature is close to Tav = (Tup + Tlow)/2, except in the vicinity
of the upper and lower plates, and at any time most of the gas in the convection cell is at a temperature close to Tav. Gas
which is in contact with the lower plate of the cell is heated to a temperature Tav + ∆T (where 0 ≤ ∆T ≤ ∆Th/2), and
joins a plume of rising gas. The plumes are mixed by the turbulence in the interior of the cell. The plumes form fronts
and later tendrils of approximately homogenous gas, which remain at a temperature close to the temperature that they
had upon separation from the top or bottom plate until the last stage of the mixing process. In the final stage of mixing a
tendril formed by the plume mixes rapidly with gas from the interior of the cell, which is at a temperature close to Tav.
The final stage of mixing occurs very rapidly, on the Kolmogorov timescale, τK =

√
ν/ε. The time τmix between a plume

separating and the gas surrounding a given aerosol particle becoming mixed is highly variable: τh � τmix � τK, where
τh = (h2/ε)1/3 is the turnover time of the largest eddies. The equilibration timescale τeq will be assumed to lie between
the timescales describing the flow: τmix � τeq � τK.
The consequence of this picture is that droplets in a rising plume are at a temperature, Tav + ∆T , and while the plume
forms they equilibrate to a smaller radius: to leading order

a− = a0 − Λ∆T (1)

where Λ is a constant discussed in [11]. The gas in the plume rises, without cooling due to heat exchange, until it reaches
the interior of the cell. After a timescale τmix, the gas in the plume starts to mix with the gas in the interior. This mixing
happens on a timescale which is short compared to the phase equilibration time, so that droplets of size a− are mixed with
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Figure 1. Schematic plot of the temperature of a convected aerosol particle. The time τmix between contacts with the upper plate may
be as short as τK. There may be a very large number of contacts with the upper plate before the particle reaches the lower plate, which
requires a much longer time, of order τh.

the droplets in the bulk, which are of size a0. Similarly, plumes of cold gas which form on the upper plate at a temperature
Tav − ∆T inject larger droplets, of radius a+ = a0 + Λ∆T . The final stage of this mixing happens on a timescale of the
Kolmogorov time τK, which is small compared to the time τeq required for aerosol droplets to come into equilibrium. It
follows that while the temperature fluctuations associated with the plume are dissipated, fluctuations in the droplet size
remain ‘frozen in’, resulting in a broadening of the droplet size distribution.
The change in droplet radius arises from the abrupt change in temperature at the hot and cold plates of the convection
cell. Consider the evolution of a droplet which spends some time close to the top of the cell and which has repeated
encounters with the cold plate. As its temperature rises and falls, we might expect that the radius of the droplet would
increase and decrease, with a minimal net effect. However, there can be a marked asymmetry between the timescales
of heating and cooling. In a convection cell the gas is cooled relatively slowly by the upper plate, before being warmed
rapidly by turbulent mixing when a plume falls into the interior. If the cooling occurs slowly compared to τeq, droplets
grow by condensation. If the warming due to mixing is on a timescale τK � τeq, the larger droplets do not evaporate
to their original size. The asymmetry between the cooling and heating processes allows the droplets to have a systematic
growth, rather than a cyclic fluctuation of size.
The production of rain from clouds depends upon droplets reaching a size which is significantly larger than their original
size. In the context of the Rayleigh-Bénard model, this would require a droplet to undergo repeated encounters with the
cold plate. The time τmix that an aerosol particle spends in a plume before it is mixed is highly variable and it will usually
be very short compared to the integral time τh. It follow that some droplets may experience many interactions with the
upper plate in rapid succession, as illustrated in figure 1.

APPLICATION TO RAINFALL

The talk will describe how this non-collisional model for increasing the dispersion of droplet sizes in a Rayleigh-Bénard
cell can be applied to understanding the rapid onset of rainfall from cumulus clouds. It will be argued that this mechanism
leads to a resolution of the droplet growth bottleneck problem in cloud physics. It has been argued above that the dominant
mechanism for creating larger droplets is that droplets grow by condensation at the cold upper surface of a cloud, but that
the increased size is frozen in when a falling plume of cold air is mixed rapidly in the interior of the cloud. The talk is
based upon a recent publication, [11].
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