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Abstract We study through high resolution numerical simulations unknown features of a random velocity field based on the so-called

multiplicative chaos, previously proposed in the literature to model turbulence [3]. We investigate the influence of the intermittency

parameter, observing the behaviour of the field as it is changed. In this way, we can determine whether corrections to the 4/5 law exist

and pursue some properties that have not been analytically computed. We also study the effects on other realistic properties such as the

preferential alignment of vorticity.

THE RANDOM VELOCITY FIELD

The development of synthetic velocity fields to model turbulence has received a lot of attention in recent years. On the

one hand there are important practical applications, for instance to save substantial computation time producing inputs for

numerical simulations [1], but one is also interested in creating tractable mathematical objects reproducing the archetypal

properties of turbulence in order to gain some theoretical insight on the mechanisms behind the Navier-Stokes equations

and the behaviour of its turbulent solutions.

In this picture, Robert and Vargas [2] proposed a family of stochastic homogeneous and isotropic fields based on the

so-called multiplicative chaos, a process generated from the exponential of another stochastic process. It explicitly ex-

hibited Kolmogorov’s 4/5 law and intermittency, however it was not incompressible. Incompressibility could be achieved

combining the components in a Biot-Savart fashion but at the cost of getting symmetrical velocity increments, ruining one

of the most important features of turbulence. This issue was only solved with a structural change, the generalisation to a

matrix-valued multiplicative chaos which finds an interesting analogy with the dynamics of vorticity stretching [3]. The

idea is to take the exponential of the homogeneous and isotropic matrix field

Xǫ(y) =

√
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32π
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|y − z|7/2ǫ
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, (1)

whose components are log-correlated over the integral length scale L, to create the following vector velocity field

uǫ(x) =

∫

ϕL(x− y)
x− y

|x− y|13/6ǫ

∧ eγX
ǫ(y)dW (y). (2)

In (1), ⊗ represents the tensor product (x⊗y)ij ≡ xiyj . dW is a three-dimensional vector white noise and the same one

is used both in (1) and (2), since correlation between them is crucial to reproduce realistic results. The large scale cut-off

function ϕL ensures that the integral converges at infinity, rapidly decaying for |x| > L, and the small scale cut-off ǫ
regularizes the function 1/|x|, being interpreted as the Kolmogorov dissipative scale. cǫ is a normalization constant added

so the variance is finite in the limit ǫ → 0. The intermittency parameter γ is central: one has a gaussian field when it is

zero and intermittency develops as it increases. Its value was fixed as γ ≈ 0.26 through the fitting of the flatness curve in

relation to experimental and DNS data. It is worth to mention that the numerical factor
√

15/32π is chosen so in the limit

ǫ → 0 one has 〈Xǫ
11(x)X

ǫ
11(0)〉 ∼ ln (L/|x|) as |x| → 0, with no additional numerical factors.

STATISTICS

Numerical simulations showed that this incompressible field indeed exhibited skewed velocity increments and, further-

more, reproduced other typical turbulence phenomena such as vorticity alignments and the asymmetry of the RQ-Plane.

Nevertheless, the complexity brought by the matrix multiplicative chaos prevents the derivation of analytical results. It

has not been possible to explicitly calculate the structure functions, so one may not know, for example, if there are small

intermittent corrections depending on γ to the third order structure function (and consequently deviations from the 4/5

law) or how these corrections develop for other structure functions. Even the process’ variance is unknown, so one is not

able to define the proper normalization constant which gives a finite variance in the limit ǫ → 0.

This work intends to investigate these issues and the influence of γ through high-resolution parallel simulations and also

discuss simplified cases where analytical results can be obtained, giving some insight on what to expect from the statistical

properties of (2). Figure 1 depicts for instance the third order structure functions calculated from simulations on a cube

with 20483 points for different intermittency parameters. It shows the increments are skewed in reasonable agreement



with the Kolmogorov scaling (thus the fields incorporate energy transfers) and moreover that the multiplicative constant

depends on γ. Evidence of corrections to the 4/5 law are found when comparing the unsigned third order structure
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Figure 1. Third order structure function.

functions to the gaussian case, providing a way to modify (2) to ensure an asymptotic Kolmogorov scaling. We also

analyze the proper normalization constant, checking how it changes with the small scale cut-off ǫ as well as with γ.
The effect of the intermittency parameter on other more intricate properties of turbulence is considered as well, such

as the preferential alignment of the vorticity vector. In figure 2 we plot the probability distribution functions (PDFs) of

the cosine of the angles between the vorticity and the directions defined by the eigenvectors associated with the lowest,

the intermediate and the highest eigenvalues of the rate-of-strain tensor, for different values of γ. One sees that for the

gaussian case γ = 0 there is no preferential alignment, while as γ increases a substantial alignment with the direction

associated to the intermediate eigenvalue is observed, along with a tendency to remain normal to the lowest eigenvalue

direction. Variations with respect to the highest eigenvalue direction are less sensible. It is interesting to note that there

seems to be a saturation of the alignments as γ increases too much, approaching the limiting value 1/
√
6 ≈ 0.41 for

which (2) is defined.
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Figure 2. PDFs of the cosine of the angles between the vorticity vector and the eigenvectors of the rate-of-strain tensor. Red: γ = 0.08.

Green: γ = 0.18. Blue: γ = 0.26. Magenta: γ = 0.34. Black: gaussian case γ = 0.

References

[1] C. Rosales and C. Meneveau. A minimal multiscale Lagrangian map approach to synthesize non-Gaussian turbulent vector fields. Phys. Fluids,
18:075104, 2006.

[2] R. Robert and V. Vargas. Hydrodynamic turbulence and intermittent random fields. Commun. Math. Phys., 284:649–673, 2008.
[3] L. Chevillard, R. Robert and V. Vargas. A stochastic representation of the local structure of turbulence. EPL, 89:54002, 2010.


