
15TH EUROPEAN TURBULENCE CONFERENCE, 25-28 AUGUST, 2015, DELFT, THE NETHERLANDS

ENERGY EXCHANGES AND TIME ASYMMETRY IN 3D TURBULENT FLOWS

Alain Pumir1,2, Haitao Xu2a, Rainer Grauer3 & Eberhard Bodenschatz2
1 Ecole Normale Supérieure de Lyon and CNRS, F-69007 Lyon, France

2 Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
3 Institute for Theoretical Physics I, Ruhr Universität Bochum, D-44780, Bochum, Germany

Abstract In 3D turbulent flows, the direct cascade of energy, characterized by a flux through scales, ε, is a strong source of irre-
versibility. This irreversibility manifests itself in the asymmetry between negative and positive kinetic energy differences along particle
trajectories. In particular, it is observed that the odd moments of the power of the forces acting on a fluid particle, p ≡ a · V are
negative, and that −〈p3〉/ε3 ∝ R2

λ. This property rests on subtle correlations between acceleration and velocity. I will discuss two
representations of the acceleration a, which shed light on the irreversibility of the flow.

INTRODUCTION

The study of the motion of individual fluid particles transported by high Reynolds numbers flows raises significant ques-
tions on the physics of turbulence. Here, we focus on the motion of individual fluid particles. Contrary to the case of
eulerian properties, the lagrangian structure functions: Dn(τ) = 〈(V(τ)−V(0))n〉, where the average 〈...〉 refers either
to an ensemble average, or in the case of stationary flows, to a time-average along a trajectory, are insensitive to a time
reveral of the motion of particles, and therefore, they can provide at best limited information on the dynamics [1].
Recent experiments and numerical simulations revealed that energy differences along a fluid trajectory,W (τ) = 1

2 (V
2(τ)−

V2(0)), are sensitive to the lack of time symmetry. Qualitatively, large negative values of W are more probable than large
positive values ofW , an asymmetry which gives rise to negative odd moments ofW . In the short τ limit, the nth moments
of W reduce to the nth moments of power, p ≡ V · a, multiplied by τn. Experimental and numerical results in particular
reveal that −〈(p/ε)3〉 ∝ R2

λ, over a large range of Reynolds numbers 100 ≤ Rλ ≤ 900.
To better understand this result, we introduce here two decompositions of the acceleration. The first decomposition is
based on identifying the forces acting on a fluid. In a forced flow, acceleration is simply expressed as:

a = −∇P/ρ+D+ f (1)

where P is pressure, ρ is the fluid density, which we can take without any loss of generality to be equal to 1, D the dissi-
pation, which is due to viscosity, and f is the large-scale forcing. It is known that the dominant term in the decomposition
(1) is due to pressure. We demonstrate that the role of pressure is more subtle, and that paradoxically, the term −V · ∇P
has a positive third moment. Further analysis reveals a surprising role of pressure, in accelerating fast particles.
Another way to represent acceleration consists in writing a as a sum of the local part, plus a convective part: a ≡ aL+aC ,
with aL = ∂tu and aC = (u · ∇)u. The term aL is due to the eulerian time-dependence of the velocity field, whereas the
term aC corresponds to the acceleration of a particle in a frozen velocity field u(x, t) = u0(x). We show that integrating
the third moment of the velocity difference, 〈W 3(τ)〉 is also negative in the case of a frozen velocity field.

RESULTS

The results presented here are based on direct numerical simulations of the Navier-Stokes equations, by using pseudo-
spectral codes, run at ENS Lyon, with Reynolds numbers in the range: 115 ≤ Rλ ≤ 300 [5, 3]. In addition, we have used
data obtained from the Johns Hopkins Turbulent Database, at Rλ = 430.

Role of pressure
For all the Reynolds number considered here, the pressure gradient contributes to more than ∼ 85% of the variance of
p [3], which is consistent with the observation of [4]. On the other side, the asymmetry in the fluctuations of p is not
captured by the fluctuations of −V · ∇P . In fact, whereas the skewness of p is found to be of the order ∼ −0.6, the
skewness of the fluctuations of −(V · ∇)P is found to be of order 0.1. The difference in sign between the third moment
of p and the pressure term −V∇P suggests that pressure tends to contribute more to large energy gain than to energy
losses, which seems a bit counterintuitive. In fact, the third moment of p = −V · a, where a is decomposed as in (1), is
mostly due to the cross-product terms 3〈(−V · ∇P )2(V ·D)〉 and 3〈(−V · ∇P )2(V · f)〉.
Generally, it is known that pressure does not play any role in the energy balance in a homogeneous flow: 〈V · ∇P 〉 = 0.
Although this condition imposes that pressure does not create or dissipate any energy, pressure may still redistribute
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Figure 1. The conditional average of −(V · ∇) on V 2 shows that particles with a large velocity tend to be accelerated by pressure
forces.

energy between particles. Fig. 1 shows the value of 〈−(V · ∇)P |V2〉, and demonstrates that pressure tends to increase
the velocity of fast particles, at the expanse of slower particles. This surprising result may point to a contribution of
pressure in the problem of singularities in the Navier-Stokes equations [2], to be further understood.

Asymmetry of energy in frozen turbulent flows
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Figure 2. The moments 〈W 2(τ)〉/〈E〉2 (left) −〈W 3(τ)〉/〈E〉3 (right) as a function of τ , in the case of a frozen flow at Rλ = 115

Fig. 2 shows the second (left) and third (right) moments of W , obtained from a frozen turbulent flow at Rλ = 115. The
third moment of W is negative, suggesting that some of the properties uncovered in [5] may be analyzed in terms of
spatial properties of turbulent flows.
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