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Abstract Since direct simulations of the incompressible Navier-Stokes equations are limited to relatively low-Reynolds numbers,
dynamically less complex mathematical formulations are necessary for coarse-grain simulations. Eddy-viscosity models for Large-
Eddy Simulation is probably the most popular example thereof: they rely on differential operators that should be able tocapture
well different flow configurations (laminar and 2D flows, near-wall behavior, transitional regime...). Most of them are based on the
combination of invariants of a symmetric second-order tensor that is derived from the gradient of the resolved velocityfield. In the
present work, they are presented in a framework where all themodels are represented as a combination of elements of a 5D phase space
of invariants. In this way, new models can be constructed by imposing appropriate restrictions in this space. The performance of the
proposed models is successfully tested for a turbulent channel flow.

THEORY: A 5D PHASE SPACE FOR EDDY-VISCOSITY MODELS

Due to its inherent simplicity and robustness, the eddy-viscosity assumption is by far the most popular closure to model
the subgrid-scales in Large-Eddy Simulation. In order to beframe invariant, they are usually based on the combination
of invariants of a symmetric second-order tensor that depends on the gradient of the resolved velocity field,G ≡ ∇u.
This second-order traceless tensor,tr(G) = ∇ · u = 0, contains8 independent elements and can be characterized by5
invariants (3 scalars are required to specify the orientation in 3D). Following the same notation as in [1], this set of five
invariants can be defined as follows

{QG, RG, QS , RS , V
2}, (1)

whereQA = 1/2{tr2(A)−tr(A2)} andRA = det(A) represent the second and third invariants of the second-order tensor
A, respectively. Moreover, the first invariant ofA is denoted asPA = tr(A). Finally,V 2 is equal to theL2-norm of the
vortex-stretching vector,i.e.V 2 = 4(tr(S2Ω2)− 2QSQΩ) = |Sω|2 ≥ 0, whereS = 1/2(G+GT ), Ω = 1/2(G−GT )
andω = ∇× u. Starting from the classical Smagorinsky model [5] that reads

νSmag
e = (CS∆)2|S(u)| = 2(CS∆)2(−QS)

1/2, (2)

existing models can be re-written in terms of the 5D phase space defined in (1). For instance, the WALE [3] and the
Vreman’s model [8] respectively read

νWe = (CW∆)2
(V 2/2 + 2/3Q2

G)
3/2

(−2QS)5/2 + (V 2/2 + 2/3Q2

G)
5/4

and νV r
e = (CV r∆)2

(

V 2 +Q2

G

2(QΩ −QS)

)1/2

, (3)

whereQΩ = QG − QS . The major drawback of the Smagorinsky model is that the differential operator it is based on
does not vanish in near-wall regions (see Figure 1, right). It is possible to build models based on invariants without this
limitation. Examples thereof are the WALE, the Vreman’s, the Verstappen’s and theσ-model (see also Figure 1, right).

BUILDING PROPER INVARIANTS FOR EDDY-VISCOSITY MODELS

At this point, it is interesting to observe that new models can be derived by imposing restrictions on the differential
operators they are based on. For instance, let us consider models that are based on the invariants of the tensorGGT

νe = (CM∆)2P p
GGTQ

q
GGTR

r
GGT , where − 6r − 4q − 2p = −1; 6r + 2q = s, (4)

andPGGT = 2(QΩ − QS), QGGT = V 2 + Q2

G andRGGT = R2

G, respectively. The above-defined restrictions on the
exponents follow by imposing the[T−1] units of the differential operator and the slope,s, for the asymptotic near-wall
behavior (see Figure 1, right),i.e.O(ys). Solutions forq(p, s) = (1 − s)/2 − p andr(p, s) = (2s − 1)/6 + p/3 are
displayed in Figure 1. The Vreman’s model given in Eq.(3) corresponds to the solution withs = 1 (see Figure 1) and
r = 0. However, it seems more appropriate to look for solutions with the proper near-wall behavior,i.e.s = 3 (solid lines
in Figure 1). Restricting to solutions involving only two invariants, the three models (also represented in Figure 1) follow,

νS3QP
e = (Cs3qp∆)2P

−5/2

GGT Q
3/2

GGT ; νS3RP
e = (Cs3rp∆)2P−1

GGTR
1/2

GGT ; νS3RQ
e = (Cs3rq∆)2Q−1

GGTR
5/6

GGT , (5)
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Figure 1. Left: Solutions for the linear system of Eqs.(4) fors = 1 (dashed line) ands = 3 (solid line). Each(r, q, p) solution
represents an eddy-viscosity model of the form given in Eq.(4). Right: near-wall behavior and units of the five basic invariants in the
5D phase space given in (1) and the invariantQΩ = QG −QS together with the near-wall behavior of several eddy-viscosity models.
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Figure 2. Results for a turbulent channel flow atReτ = 395 obtained with a323 mesh for LES and a963 mesh without model,
i.e.νe = 0. Solid line corresponds to the DNS by Moseret al. [2].

where the model constants,Cs3xx, can be related with the Vreman’s constant,CV r, with the following inequality

0 ≤ (CV r)
2

(Cs3xx)2
νS3xx
e

νV r
e

≤ 1

3
. (6)

Hence, imposingCs3pq = Cs3pr = Cs3qr =
√
3CV r guarantees both numerical stability and that the models have less or

equal dissipation than Vreman’s model,i.e.0 ≤ νS3xx
e ≤ νV r

e . Figure 2 shows the performance of the proposed models
for a turbulent channel flow in conjunction with the discretization methods for eddy-viscosity models proposed in [6].
Compared with Vreman’s model, they improve the results nearthe wall.
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