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Abstract Motivated by advances in constrained optimization methods, a fundamentally new autonomic closure for LES is presented
that invokes a self-optimization method for the subgrid-scale stresses instead of a predefined turbulence model. This autonomic closure
uses the most general dimensionally-consistent expression for the local subgrid-scale stresses in terms of all resolved-scale variables and
their products at all spatial locations and times, thereby also incorporating all possible gradients of all resolved variables and products.
In so doing, the approach addresses all possible nonlinear, nonlocal, and nonequilibrium turbulence effects without requiring any direct
specification of a subgrid-scale model. Instead it uses an optimization procedure with a test filter to find the best local relation between
subgrid stresses and resolved-scale variables at every point and time. We describe this autonomic closure approach, discuss truncation,
regularization, and sampling in the optimization procedure, and present results from a priori tests using DNS data for homogeneous
isotropic and sheared turbulence. Even for the simplest 2nd-order truncation of the general formulation, substantial improvements over
the dynamic Smagorinsky model are obtained with this new autonomic approach to turbulence closure.

INTRODUCTION

The primary challenge in large eddy simulations (LES) is to formulate a physically accurate closure model for the SGS
stresses, τij(x, t), and many such closure models have been proposed (e.g., see [4] for a review). To date, however,
no SGS model has been found that in a priori tests produces accurate values of τij(x, t) to ensure the correct space-
and time-varying momentum and energy exchange between the resolved and subgrid scales at each location and time.
This is essential for accurate LES, since errors in the modeled τij(x, t) field propagate up through the resolved scales.
Here we avoid this by presenting a fundamentally new autonomic approach to LES closure that does not presume any
predefined constitutive model of the SGS stresses in terms of resolved-scale quantities. Instead, the approach allows the
simulation itself to determine the best local relation between the subgrid stresses and all resolved state variables at a test
filter scale, and then projects the resulting local relation to evaluate the local subgrid stresses at the LES filter scale. This
new autonomic turbulence closure shows significant improvements over the dynamic Smagorinsky model in a priori tests.

THE AUTONOMIC SUBGRID-SCALE CLOSURE

Fundamentally, the search for any subgrid-scale closure amounts to formulating a suitable expression for τij in terms of
the primitive state variables in the governing equations – for incompressible flow these are the resolved-scale velocities ũi
and pressure p̃. Moreover, in order to account for nonlocal and nonequilibrium effects the closure expression should not
preclude the possibility that τij at a particular point and time depends on the primitive variables at other points and times.
We can write the local subgrid stresses in this fully general way via the most general dimensionally-consistent expression
involving all resolved-scale variables ũi and pressure p̃ and their products at all spatial locations and times, namely

τij(x, t) = F [ũ(x′, t′), p̃(x′, t′), x′, t′,L, T ] , (1)

in which the function F denotes the closure model, and where x′ denotes the entire spatial domain, t′ denotes all times,
L is a characteristic length scale (e.g., the filter width ∆), and T is a characteristic time scale (e.g., the resolved strain
rate magnitude). All prior SGS models assume some highly restrictive chosen functional form for F . By contrast, here
we allow F to include all linear and nonlinear combinations of all resolved-scale variables and all possible products
among them at all spatial locations and times. This thereby also indirectly includes a wide range of mathematical opera-
tions among all resolved-scale variables and their products, including temporal and spatial derivatives, filters, multi-point
differences, and multi-point products. Moreover, since Eq. (1) incorporates the entire spatial and temporal domains, it
includes not only nonlinear effects but also nonlocal and nonequilibrium effects [5, 1, 2].
Specifically, we can express F in this fully general manner, including all linear and nonlinear combinations of ũi and p̃ at
all points and times, and using T and L to ensure dimensional consistency of each term, via the relation
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where m = [1,M ] spans all discrete time steps, n = [1, N ] spans all discrete spatial locations in the three-dimensional
domain, and where the primitive variables are ṽknm = [ũ1(xn, tm), ũ2(xn, tm), ũ3(xn, tm), p̃(xn, tm)] with k = [1, 4],
with summation implied over repeated indices. Note that this general relation involves a very large set of unknown
coefficients, namely all the α’s, β’s, γ’s, etc., which in general can be expected to vary from point-to-point and with time
as the local subgrid stress dynamics adapt to local changes in the turbulence state. Since the coefficients are unspecified,
there is no predefined turbulence model imposed in this autonomic approach, and no assumptions are made as to how the
subgrid stresses are related to the resolved primitive variables beyond the fundamental assumption underlying all LES that
the subgrid stresses are functions of the resolved-scale fields ũ(x, t) and p̃(x, t) and characteristic time and length scales.
The coefficient matrices α, β, and γ in Eq. (2) at each point and time can then be found using standard inverse modeling
and optimization techniques based on known SGS stresses at a test filter scale. An objective function based on scale
similarity and a test filter is used to drive the optimization process and determine the coefficients, which are then used
to formulate SGS stresses at the grid scale. Since the coefficient values are determined autonomically via this local self-
optimization within the simulation, we avoid any need to specify a subgrid-scale model, and the simulation instead finds
the best local relation between subgrid stresses and resolved-scale variables at every point and time.

TEST RESULTS FROM THE AUTONOMIC CLOSURE

We present results from a priori tests of this new autonomic LES closure method (termed ALES closure) using DNS data
for homogeneous isotropic turbulence [6]. Spectrally sharp filters were applied at ∆LES and ∆1 to respectively generate
LES and test filtered fields. To show a minimal working example of ALES closure, we include in F only terms up to 2nd

order in ũi, neglect p̃, use only the current time, and limit the spatial information to a 3 × 3 × 3 stencil. At the test filter
scale Figure 1 shows the true stresses τ11, τ13, and τ23, the ALES stresses, and corresponding stresses from the dynamic
Smagorinsky model [3]. Since ∆1 is where the ALES coefficients are optimized, the new closure accurately captures
the structure and magnitudes of these stress fields. The real test of the ALES closure and scale invariance of the ALES
coefficients is in Figure 2, showing the same stress components as in Figure 1 but at ∆LES . Here structures in the stress
fields are sharper and more intermittent than at the test filter scale, but the ALES closure correctly captures nearly all of
these features. This agreement is remarkable considering the severe truncation applied in these initial tests of the ALES
approach. The final paper will present full details on the ALES closure and more extensive demonstration results.
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Figure 1. True SGS fields, 2nd order ALES, and Dynamic
Smagorinsky [3] predictions at the test filter scale ∆1 for ho-
mogeneous isotropic turbulence (HIT).
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Figure 2. True SGS fields, 2nd order ALES, and Dynamic
Smagorinsky [3] predictions at the LES filter scale ∆LES

for homogeneous isotropic turbulence (HIT).
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