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Abstract We study the scaling properties and Kraichnan-Leith-Beltmh(KLB) theory of forced inverse cascades in generalines
dimensional (2D) fluidsd-turbulence models) simulated at resolut®i92?. We considerr = 1 (surface quasigeostrophic flow),
«a = 2 (2D vorticity dynamics) andv = 3. The forcing scale is well-resolved, a direct cascade isgareand there is no large-scale
dissipation. Coherent vortices spanning a range of sizest farger than the forcing scale, are present for bots 1 anda = 2.
The active scalar field far = 3 contains comparatively few and small vortices. The enepggsal slopes in the inverse cascade are
steeper than the KLB prediction(7 — «) /3 in all three systems. Since we stop the simulations wellfeetfee cascades have reached
the domain scale, vortex formation and spectral steepesmiagiot due to condensation effects; nor are they causeddpy-daale
dissipation, which is absent. One- and two-point pdfs, hjgmess factors and structure functions indicate thatriherse cascades
are intermittent and non-Gaussian over much of the ingdiae fore = 1 anda = 2, while thea = 3 inverse cascade is much closer
to Gaussian and non-intermittent. Fer= 3 the steep spectrum is close to that associated with engtegplipartition. Continuous
wavelet analysis shows approximate KLB scali(d) « k=2 (o = 1) and& (k) « k~%/% (a = 2) in the interstitial regions between
the coherent vortices. Our results demonstrate that cohgogtex formation ¢ = 1 anda = 2) and non-realizability ¢ = 3)
cause 2D inverse cascades to deviate from the KLB predigtimut that the flow between the vortices exhibits KLB scafind non-
intermittent statistics foe = 1 anda = 2. The results will appear in Burgessal. (2015), which has been accepted to dbarnal

of Fluid Mechanics.

BACKGROUND AND MAIN RESULTS

The extent to which Kraichnan-Leith-Batchelor (KLB) sianity theory (Kraichnan , 1967; Leith , 1968; Batchelor ,
1969) describes inverse cascades is a major unresolvedirs2D turbulence. Using a pseudospectral code at resolutio
81922 we simulate inverse cascades in generalized 2D fluids, alsaik asa turbulence models (Pierrehumbetial. |
1994). In these models an active sc#l@ advected by a velocity field to which it is functionallyagdd f = (—A)*/24),
wherez) is the streamfunction and is a parameter controlling the scale separation betweandd. Whena = 2, the
active scalar is the familiar vorticity = —V?2¢ and the unforced inviscid system reduces to 2D Euler floworfsfy
rotating quasigeostrophic flows and plasmas in strong nteginedds both correspond t@a = —2, while surface quasi-
geostrophic dynamics (SQG) correspondste 1.

Similarity theory, which assumes scale-invariant inéréamges in which transfers are spectrally local, predicé the
generalized energy spectruik) follows a power law€ (k) o k~(7=)/3 in the inverse cascade. Far= 2 this yields
the well-known—5/3 law for the kinetic energy (KE) spectrum. Despite the argpelstatus of the inverse KE cascade
for o = 2, there is disagreement about its phenomenology and &tatisharacteristics. Some authors, e.g. Boffetta &
Ecke (2012), have found that this cascade is well-deschigesIf-similar inertial range theory, lacks coherent io&s,
has almost Gaussian statistics, and is non-intermittetitetGstudies, e.g. Vallgren (2011), have found spectrafsign
cantly steeper thah~>/? in the inverse KE cascade, suggesting the KLB scaling is eoedc.

Most of the studies that fouriet->/3 scaling in the inverse KE cascade used forcing near thedargsolved wavenumber,
which does not allow an enstrophy cascade to develop, aadépge-scale drag or hypoviscosity, which can both disrupt
vortex formation and cause condensation-like effects.uinsimulations the forcing scale is well-resolved, an ety
cascade is present, and there is no large-scale dissipati@pectral steepening is not due to condensation-liketsff
We find that both thex = 1 anda = 2 inverse cascades are populated by vortices with a rangees,shccompanied
by steep spectra (figure 1), non-Gaussian and intermittetigtics. We use continuous wavelet analysis to study éhe: fi
between the vortices, and find that it exhibits approximdt8Iscaling (figure 2). In contrast to the other two systems,
a = 3 contains no large or persistent vortices, but the specteustill steeper than the KLB scaling, as predicted by
Burgess & Shepherd (2013).

To what extent KLB similarity theory describes 2D inverseaades appears to be a rather complex question. Sensitivity
to simulation parameters, the various tendencies of 2Ddliddorm coherent structures, and the realizability of th&K
similarity solutions as inverse cascades all impact thevansThough coherent structures form when flows with= 1



anda = 2 are forced at resolved scales, causing spectral steeperingGaussianity, and intermittency, KLB theory
remains a good description of the interstitial fields in thegstems.
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Figure 1. Inverse cascade energy spectradoe 1, o = 2, anda = 3, with KLB scaling for comparison.
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Figure 2. Wavelet and Fourier spectra far = 1 (left) anda = 2 (right). The Fourier spectrum (gray) is overlain on the glbb
averaged wavelet spectrogram (black circles). Wavelettsmgrams for the interstitial flow (solid black lines) alappear together
with KLB scaling (dashed black lines).
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