HAMILTONIAN DESCRIPTION

The inertial waves in incompressible rotating fluid obey the following dispersion law:
\[\omega = 2\Omega |\cos \theta|, \]
where \(\Omega \) is the value of the angular velocity, \(\theta \) is the angle between the wave vector \(k \) and the axes of rotation. When the rotation is rapid the waves interact weakly, that means that we deal with so-called "weak turbulence". The problem attracts the attention of experimenters [3] and its theoretical study is far from complete. The theory of weak turbulence was studied using a helicity decomposition in [2]. Meanwhile, the Hamiltonian formalism has not been developed.

References