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Abstract The present work builds upon the diagnostic plot for the streamwise turbulence intensity [Alfredsson & Örlü, 2010] and

generalises it for higher-order (even and odd) moments providing a general description of the probability density distribution of stream-

wise velocity fluctuations. Turbulent boundary layers (up to a friction Reynolds number of 20’000) are employed and demonstrate its

feasibility to scale data throughout the overlap and outer region.

BACKGROUND AND MOTIVATION

The recent emergence of reasonably well-resolved data from high Reynolds number (Re) pipe and turbulent boundary
layer (TBL) flows has challenged the classical understanding of wall turbulence. In particular, the failure of inner-scaling
(henceforth denoted through the superscript ’+’) for the streamwise velocity rms profile (Fig. 1a) has avalanched a number
of experimental campaigns to provide well-resolved high-Re data both in pipe and TBL flows (see e.g. Ref. [6] and
references therein). While the debate regarding the scaling of the inner peak of the variance profile (at least in TBL flows)
has come close to a settlement [6], the emergence of a second peak (cf. Fig. 1a) as well as Refs. [5, 12] among others)
continues to stir the minds: relating its presence either to structural changes in the flow [9], a predictable feature inherent
already in lower Re data [3] or simply to measurement insufficiencies.
The availability of high Re data has, on the other hand, compiled compelling empirical evidence for the existence of a
logarithmic mean velocity profile [7]. At the same time, the data at hand has resurrected the actuality of the logarithmic
law for the streamwise variance profile, as predicted by Townsend [11] based on the attached-eddy hypothesis. Recent
efforts have probed its validity for the variance, but also higher-order even moments [8, 13] as also depicted in Fig. 1b for
the 2nd to 10th central moment. As apparent in that figure, a logarithmic behaviour is visible for the a wide part of the
overlap region for all presented even moments following 〈u+2p〉1/p = Dp(Reτ ) − Ap ln y

+, where Dp and Ap are flow
case, Re and moment-dependent parameters, where Ap is expected to asymptote to a universal value at large Re [13].
An alternative scaling behaviour has emerged from the diagnostic plot [1], where the turbulence intensity is plotted against
the outer-scaled mean velocity (U/U∞) rather than wall distance. The diagnostic plot has shown promising success to
collapse TBL data (but also pipe and channel flows) covering a wide Re range throughout the overlap and outer layer [4]
as also apparent from Fig. 1c, where the data from Fig. 1a has been brought to collapse; linearly dependent on U/U∞.
Hence, with a measured or modelled mean velocity profile, the streamwise variance profile of pipe, channel and TBL
flows could be described [4]. Based on this success, the present efforts aim at extending the description to higher-order
(both even and odd) central moments.

RESULTS AND OUTLOOK

The probability density function (PDF) of the streamwise velocity fluctuations (scaled by U ) for the three Re-cases
shown in Fig. 1b) are as well plotted in diagnostic form in Fig. 2a. Since the contour lines of the PDFs, irrespective of
Re, collapse both near the median and in the tails of the PDF, also higher-order moments should scale in diagnostic form.
A generalised form of higher order moments in diagnostic scaling can be expressed as |〈un〉|1/n/U as function of U/U∞

and is shown in Fig. 2b for odd moments (n = 3, 9, 17) and in Fig. 2c for even moments (n = 4, 10, 18). These are the
same 29 data sets as shown in Fig. 1a and as can be seen they collapse irrespective of Reynolds number throughout the
boundary layer except in the region 0.4 . U/U∞ . 0.6. This region corresponds approximately to 15 . y+ . 100.
Indeed, the shown collapse of data over a wide Re-range throughout the boundary layer, with the exception of the in-
termediate layer, generalises the diagnostic scaling to higher-order even and odd moments. However the clear spread of
the data in the region 0.4 . U/U∞ . 0.6 shows that this region does not exhibit self-similarity in the fluctuations. One
may hypothesise that this is due to an influence on the fluctuations both from the wall itself and from the outer region and
that this mixed influence prohibits self-similarity of the fluctuations. Further away from the wall the restrictive influence
of the wall (no-slip and non-permeability) becomes negligible and the outer region becomes self-similar. In close wall
proximity, the viscous sublayer acts more or less as a lubrication layer which is forced by the outer flow, resulting in a
near log-normal scaling of the velocity fluctuations [2], thereby the outer flow is forcing a more or less passive layer. The
implications of the found generalised diagnostic scaling as well as its relation to the generalised logarithmic law will be
expanded on in the final presentation.
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Figure 1. a) Inner-scaled streamwise mean (solid line) and rms (dashed line) profiles for 22 (black) and 7 (red) ZPG TBL experiments

covering a range of Reτ = 800− 6000 [10] and 1400− 20000 [12], respectively. Blue dashed line indicates the logarithmic law with

constants given in Ref. [12]. b) Generalized logarithmic law for the 2p-order moments for Reτ = 850 (black), 2400 (blue) and 5600

(red). Dashed lines indicates the logarithmic behaviour for the 10th moment at the highest Re. c) Extended diagnostic plot for the

entire data set shown under a). Dashed line corresponds to the linear fit with constants given in Ref. [4].

U/U∞

(u
−

U
)/

U

0.2 0.4 0.6 0.8 1

−0.6

−0.3

0

0.3

0.6

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n =3, 9, 17

U / U∞

|〈
u

n
〉|

1
/
n
/
U

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U / U∞

〈u
n
〉1

/
n
/
U

n = 4, 10, 18

a) b) c)

Figure 2. a) PDF map in diagnostic scaling for the same profiles shown in Fig. 1b. Contour levels correspond to 0.01, 1, 10, 50, and

90% of the maximum PDF value of each Re case. b) Generalized diagnostic plot for odd moments for the entire data set shown under

Fig. 1a. Note that in case of odd moments, the absolute value had to be considered before applying the root operator. c) Generalized

diagnostic plot for even moments for the entire data set shown in Fig. 1a.
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