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Abstract By varying the wavenumber over a large and finely discretized interval of values, we analyse the phase and group velocity
of linear three-dimensional travelling waves both in the plane wake and channel flows to get the transition between dispersive and
non-dispersive behaviour. The dispersion relation is computed from the Orr-Sommerfeld and Squire eigenvalue problem by observing
the least stable mode, see figure 2, panels (a,b) and the comparison with [1, 2, 4–11, 15, 16]. The group velocity vg is also shown.
The Reynolds number varies in the 20-100, 1000-8000 ranges for the wake and the channel flow, respectively, while we consider
wavenumbers in the range 0.1-10. The wake basic flow consists of the first two orders of the Navier-Stokes matched asymptotic
expansion described in [3, 13, 14]. At low wavenumbers we observe a dispersive behaviour where the phase speed and the group
velocity substantially differ. The relevant perturbed solution is amenable to the typical solution belonging to the left branch of the
eigenvalue spectrum, see the two examples shown in figure 1 (channel flow: Re = 6000, k = 1; wake Re = 100, k = 0.7).
By rising the wave number value, we observe a sharp transition from the dispersive to the nondispersive regime. This transition is
located at a critical wave number kd which is a function of the Reynolds number Re, the wave angle φ, and the wake downstream
observation point x0. Precisely, kd increases with Re and decreases with φ for the wake flow, while these trends are reversed for the
channel flow, see tables 1,2. Beyond the wavenumber threshold, the observed least-stable mode belongs to the right branch of the
spectrum.
The asymptotic solutions in the dispersive region are wall modes for the channel flow , and in-wake modes for the wake flow. This
means that, for both the flows, the dispersive behaviour is related to perturbations with high momentum variations (high vorticity) in
correspondence to the base flow high-shear region. On the contrary, if k > kd the solutions are central modes for the channel case, and
out-of-wake modes for the wake flow. In these cases, the disturbance has high variations outside the base flow high-shear region.
To understand the physical mechanism of the dispersive-nondispersive transition we focused on time variation of the wave kinetic
energy associated to the convective transport. Figure 2 (c,d) shows the convective term as a function of the wavenumber for the two
least stable modes. We observe that the dispersive-nondisperive transition allows waves k > kd to keep the lowest possible temporal
variation of kinetic energy, i.e. the lowest decay. This remains true also when all the other more stable modes are considered. In
practice nondispersive waves maintain their convective energy with k.
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Table 1. Values of the dispersive regime threshold wavenumber kd for the channel flow, for different values of Reynolds number and
obliquity angles. The uncertainty on kd due to the discretization is ±0.005. The reference length is the channel half-width.

Re φ = 0 φ = π/6 φ = π/4 φ = π/3
1000 2.071 2.111 2.168 2.256
2000 1.883 1.922 1.979 2.073
3000 1.764 1.803 1.866 1.960
4000 1.686 1.725 1.784 1.878
5000 1.623 1.662 1.721 1.815
6000 1.576 1.615 1.670 1.765
7000 1.536 1.568 1.627 1.720
8000 1.497 1.536 1.589 1.682



Table 2. Values of the dispersive regime threshold wavenumber kd for the wake flow, for different Reynolds numbers, obliquity angles
and for a streamwise station x0 = 20. The reference length is the diameter of the bluff-body generating the wake.

Re φ = 0 φ = π/6 φ = π/4 φ = π/3
20 0.756 0.732 0.691 0.616
30 0.968 0.943 0.896 0.815
40 1.153 1.118 1.086 0.987
50 1.325 1.294 1.250 1.159
60 1.471 1.441 1.400 1.318
70 1.616 1.587 1.550 1.463
80 1.748 1.719 1.686 1.596
90 1.881 1.851 1.809 1.728
100 1.992 1.983 1.945 1.860
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Figure 1. Eigenvalue spectra for a 3D wave inside a subcritical channel flow and a supercritical plane wake flow.
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Figure 2. Dispersive/nondispersive behavior. (a,b) Phase and group velocity as a function of the wavenumber for longitudinal waves
(φ = 0) and comparison with literature results: [1, 5, 6] for the channel, [2, 4, 7–11, 15, 16] for the wake. The phase velocity is
represented with the blue line, while the group velocity with the red one. This set of literature data includes laboratory experiments,
linear modal and global stability analysis, and DNSs. The wavenumber range is discretized with ∆k = 0.005. kd indicates the
threshold value that separates the dispersive waves from the non-dispersive waves. These solutions are computed by both a Galerkin
method involving Chandrasekhar normal functions (N = 250) and a Cěbyšhëv spectral code [12]. (c,d) Energy equation convective
term (dE/dt)C = 1/k2=

∫
U ′(kv̄∂y v̂) dy, as a function of the wavenumber, for the 2D case. U(y) is the base flow, v̂ the velocity

perturbation, v̄ is the complex-conjugate. The blue curve represents the trend for the least-stable eigenfunction, while the yellow curve
is the trend for the second-last one.


