## TURBULENT ENTRAINMENT IN JETS AND PLUMES

Maarten van Reeuwijk and John Craske

Department of Civil and Environmental Engineering, Imperial College, London, Great Britain

<u>Abstract</u> We perform direct simulation of a statistically steady jets and plume and present the value of the entrainment coefficient decomposed into 1) turbulence production; 2) buoyancy effects; and 3) deviations from self-similarity. We explain theoretically how the two cases are linked and present a generalisation valid for forced and lazy plumes.

The value of the entrainment coefficient  $\alpha$  for jets and plumes has been the subject of much debate since the inception of the entrainment hypothesis in the fifties [4], with typical top-hat values in the range  $0.064 < \alpha < 0.079$  in pure jets and  $0.10 < \alpha < 0.16$  in pure plumes [1]. Notably, the value of  $\alpha$  is significantly larger for plumes than for jets and we study the energetics of entrainment to explain this behaviour.

For an axisymmetric plume, the entrainment flux is given by  $q = -2r\overline{u}|_{\infty}$  where  $\overline{u}$  is the radial velocity. This flux is usually parameterised as  $q = 2\alpha M^{1/2}$  where  $M = \int_0^\infty \overline{w}^2 r dr$  is the integral of the streamwise momentum flux. By making use of the equation for mean kinetic energy it is possible to decompose  $\alpha$  into several contributions [3]. Starting from recent work on unsteady jets [2], it follows that  $\alpha$  can be decomposed as

$$\alpha = \underbrace{-\frac{\delta}{2\gamma}}_{\alpha_{\text{prod}}} + \underbrace{\left(\frac{1}{\beta} - \frac{\theta}{\gamma}\right) \mathbf{R} \mathbf{i}}_{\alpha_{\text{Ri}}} + \underbrace{\frac{Q}{M^{1/2}} \frac{\mathrm{d}}{\mathrm{d}z} \left(\log \frac{\gamma^{1/2}}{\beta}\right)}_{\alpha_{\text{sim}}}$$
(1)

where Q and F are the volume flux and integral buoyancy flux, respectively, and  $\text{Ri} = FQ^2/\theta M^{5/2}$  is the plume Richardson number. The coefficients  $\beta$ ,  $\gamma$ , and  $\theta$  represent the profile constants for the momentum, energy and buoyancy flux, respectively. For Gaussian profiles, they take the value  $\beta = 1$ ,  $\gamma = 4/3$  and  $\theta = 1$ .

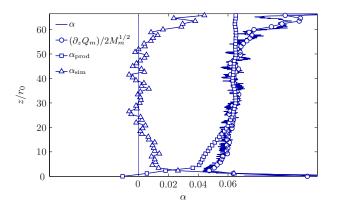



Figure 1. Decomposed turbulent entrainment coefficient in a steady jet at Re = 6815.

Equation (1) decomposes  $\alpha$  into contributions from 1) turbulence production ( $\alpha_{prod}$ ); 2) buoyancy effects ( $\alpha_{Ri}$ ); and 3) changes in profile shape which are generally restricted to the near-field. Shown in figure 1 is the decomposed entrainment coefficient for a steady jet at Re = 6815. The data was obtained using direct numerical simulation, and a detailed description of the code and validation can be found in [2]. First and foremost, the figure demonstrates that (1) is consistent with a direct definition stemming from the continuity equation  $\alpha = (2M^{1/2})^{-1} dQ/dz$ . Furthermore, the figure shows that  $\alpha_{prod}$  is the only significant contribution in the far field. Note that  $\alpha_{sim}$  is nonzero in the near field only, implying that the velocity profile changes until it finds its self-similar shape. The values for  $z/r_0 > 50$  are affected by the outflow boundary and can be ignored. In the presentation, we will show the decomposed entrainment coefficient for a statistically steady turbulent plume and explain how these two cases can be linked theoretically. Finally, we discuss how the theory can be extended to forced plumes and lazy plumes.

## References

- [1] G. Carazzo, E. Kaminski, and S. Tait. The route to self-similarity in turbulent jets and plumes. J. Fluid Mech., 547:137-148, 2006.
- [2] J. Craske and M. van Reeuwijk. Energy dispersion in turbulent jets. part 1. direct simulation of steady and unsteady jets. J. Fluid Mech., 763:500 537, 2015.
- [3] E. Kaminski, S. Tait, and G. Carazzo. Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech., 526:361–376, 2005.
- [4] B. R. Morton, G. I. Taylor, and J. S. Turner. Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London A, 234:1–23, 1956.