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Abstract We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the
Auto-Regressive Moving-Average modeling of turbulent time series. We introduce an index Υ that measures the distance from a
Kolmogorov-Obukhov model in the Auto-Regressive Moving-Average models space. Applying our analysis to Laser Doppler Ve-
locimetry measurements in a von Kármán swirling flow, we show that Υ is proportional to traditional intermittency corrections com-
puted from structure functions. Therefore it provides the same information, using much shorter time series. We conclude that Υ is a
suitable index to reconstruct intermittency in experimental turbulent fields.

INTRODUCTION
One of the few exact results known for isotropic, homogeneous and mirror-symmetric turbulence is the 4/5 - law derived
by Kolmogorv in 1941. It links the longitudinal velocity increments δu` = u(x + `) − u(x) to the mean rate of energy
dissipation 〈ε〉 via 〈δu3`〉 = − 4

5 〈ε〉`, where 〈〉 denotes averaging. This exact relation was generalized by Kolmogorov[9]
as a scaling law δu` ≡ (ε`)1/3, where ≡ means has the same statistical properties. Should ε be a non stochastic constant,
the scaling law would imply self-similar behavior for the structure functions of order p, Sp(`) = 〈δup` 〉, that would scale
like:

Fp(`) ∼ εp/3`p/3. (1)

For p = 3, we recover the 4/5 - law. For p = 2, this equation predicts a second order structure function that varies
like `2/3. By Fourier transform, this is equivalent to a one dimensional energy spectrum scaling with wavenumber k
as : E(k) ∼ k−5/3, also known as the Kolmogorov spectrum. More generally, eq. (1) predicts a linear law for the
exponent of the structure functions ζ(p) = d lnFp(`)/d ln ` = p/3. However, as pointed out by Landau and recognized
by Kolmogorov [9], there is no reason to assume that ε is a constant over space and/or time, so that it should rather be
viewed as a stochastic process, that depends upon the scale ` at which it is measured: ε ≡ ε(`). In such a case, the correct
scaling of the structure function is rather

Fp(`) ∼ 〈ε(`)p/3〉`p/3. (2)

This modified law predicts correction to the linear law ζ(p) = p/3, that are connected to the intermittent nature of the dis-
sipation. For example, a log-normal model for of the dissipation (a suggestion by Landau and Obukhov) implies quadratic
corrections for the ζ(p). Other models have been suggested and lead to different corrections [10, 6, 2]. Intermittency
corrections up to p = 4 have been measured in a variety of experimental and numerical flows and appear to be robustly
consistent from an experiment to another (see e.g. the review of [1]). Corrections for larger values of p are subject to
resolution and statistical convergence issues: the larger the scaling exponent, the larger the statistical sampling must be in
order to capture the rare events. There is presently no general consensus about the behavior of intermittency corrections at
large order. This hinders progress in the understanding of the statistical properties of the energy dissipation. In this Letter,
we suggest a new approach to probing intermittency corrections based on the Auto-Regressive Moving-Average (ARMA)
modeling of turbulent time series. We introduce a new index Υ that measures the distance from a Kolmogorov-Obukhov
model in the ARMA space. Applying our analysis to velocity measurements in a von Kármán swirling flow, we show that
this index is proportional to the traditional intermittency correction computed from the structure function and provides the
same information, using shorter time series.

INTERMITTENCY AS A DISTANCE IN ARMA SPACE
A stationary time series Xt is said to follow an ARMA(p, q) process if it satisfies the discrete equation:

Xt =

p∑
i=1

φiXt−i + εt +

q∑
j=1

θjεt−j , (3)

with εt ∼WN(0, σ2) - where WN stands for white noise - and the polynomials φ(z) = 1− φ1zt−1 − · · · − φpzt−p and
θ(z) = 1− θ1zt−1 − · · · − θqzt−q , have no common factors. Notice that the noise term εt will be assumed to be a white
noise, which is a general condition [4]. We ensure unicity by applying the Box-Jenkis procedure [3]: we choose the lowest
p and q such that the residuals of the series filtered by the process ARMA(p, q) are not correlated. To define a suitable
distance in the space of ARMA(p, q) models, we use the Bayesian information criterion (BIC), measuring the relative
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Figure 1. (a) Index Υ vs (b) the intermittency index µ = ζ∗2 − 2
3
ζ∗3 . White crosses show measurement points. (c) scatter plot of Υ vs

µ The red (gray) line shows a linear regression of the data.

quality of a statistical model. The normalized distance between the fit ARMA(p+1, q) and the Kolmogorov AR(1) model
is then defined as the normalized difference between the BIC(n, σ̂2, p+ 1, q) and the AR(1) BIC(n, σ̂2, 1, 0):

Υ = 1− exp {|BIC(p+ 1, q)−BIC(1, 0)|} /n 0 ≤ Υ ≤ 1. (4)

The p + 1 serves to magnify Υ near zero. Υ → 0 if the dataset is well described by an AR(1) model and, Υ → 1 in the
opposite case. In the case of velocity increments time series, it measures deviations from the Kolmogorov model.

APPLICATIONS
We apply the index defined in eq. 4 to velocity time series obtained in a von Kármán turbulent swirling flow. The
experimental set-up consists of two sets of blades mounted on two counter-rotating co-axial impellers at the top and bottom
of a cylindric vessel of diameterR = 0.1 m. The operating fluid is water, the rotation frequency of the impellers can reach
F = 15 Hz, resulting in large Reynolds numbers (Re = 2πFR2ν−1 ∼ 106). A detailed description of the experiment
can be found in [5, 8]. The Laser Doppler Velocimetry (LDV) used to measure the velocity fields which are mapped on a
regular sampling time applying a sample-and-hold algorithm. The LDV measurements provide the out-of-plane velocity
component Vφ into a plane. The LDV time-series are sampled over time-scale of the order of 0.001 s, producing sample
size up to 106 data on a grid of spatial resolution of the order of 1 cm. Given these resolutions constraints, we compute
temporal velocity increments for the LDV data. At each spatial grid location we compare the classical intermittency index
µ to Υ , and see how they vary. All the analyses. Since the von Kármán flow is inhomogeneous and anisotropic with large
fluctuations [5], we expect that the time and space velocity structure functions depend on the measurement points. Using
these ESS scaling exponents to compute the µ index, we may then draw a map of the intermittency and compare it with
Υ. This is done in Fig. for an LDV experiment at Re ∼ 105. The spatial patterns look indeed similar. Moreover, the plot
of Υ as a function of µ (Fig. -(c)) evidences a linear relation between them with a linear regression coefficient r ' 0.69.
This means that Υ traces the same intermittency characteristics as the time structure functions. See [7] for more details.
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